Description
Farmer John最近为奶牛们的图书馆添置了一个巨大的书架,尽管它是如此的大,但它还是几乎瞬间就被各种各样的书塞满了。
现在,只有书架的顶上还留有一点空间。所有N(1 <= N <= 20)头奶牛都有一个确定的身高H_i
(1 <= H_i <= 1,000,000 )。
设所有奶牛身高的和为S。书架的高度为B,并且保证1 <= B <= S。
为了够到比最高的那头奶牛还要高的书架顶,奶牛们不得不象演杂技一般,一头站在另一头的背上,叠成一座“奶牛塔”。
当然,这个塔的高度,就是塔中所有奶牛的身高之和。
为了往书架顶上放东西,所有奶牛的身高和必须不小于书架的高度。塔叠得越高便越不稳定,于是奶牛们希望找到一种方案,使得叠出的塔在高度不小于书架高度的情况下,高度尽可能小。你也可以猜到你的任务了:
写一个程序,计算奶牛们叠成的塔在满足要求的情况下,最少要比书架高多少。
Format
Input
-
第1行: 2个用空格隔开的整数:N 和 B
-
第2..N+1行: 第i+1行是1个整数:H_i
Output
- 第1行: 输出1个非负整数,即奶牛们叠成的塔最少比书架高的高度
Samples
输入数据 1
5 16
3
1
3
5
6
Copy
输出数据 1
1
dfs的模板题目
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<vector>
#include<math.h>
#include<iomanip>
#include<set>
#include<queue>
#include<stack>
#include<map>
using namespace std;
long long n, h,a[100],bj[100],ans=1000000000000;
void dfs(int x,long long s)
{
if (s >=h)
{
if (s < ans)
ans = s;
return;
}
for (int i = x; i <= n; i++)//从x开始循环会节省时间
{
if (bj[i] == 0)
{
bj[i] = 1;
s = s + a[i];
dfs(i + 1, s);
bj[i] = 0;
s = s - a[i];
}
}
}
int main()
{
cin >> n >> h;
for (int i = 1; i <= n; i++)
{
cin >> a[i];
}
dfs(1,0);
cout << ans-h;
}