2020复旦机试题:斗牛

该篇文章描述了一个计算牛牛游戏中特定情况的算法。通过输入的数字序列,计算并存储每个数字出现的次数,然后使用暴力求解方法在O(n^2)的时间复杂度下遍历所有可能的两张牌组合。进一步优化为O(n),通过检查个位数是否匹配来确定结果。当找到满足条件的组合时,直接输出结果。
摘要由CSDN通过智能技术生成

代码

#define _CRT_SECURE_NO_WARNINGS
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
#include <utility>

using namespace std;


int num;
// 存储0~9的数量,而不是1~10,是由对“summation % 10”决定的
int counting[10];
int summation;


int main() 
{	
	scanf("%d", &num);
	for (int i = 0; i < num; i++)
	{
		int temp;
		scanf("%d", &temp);
		temp %= 10;
		summation += temp;
		counting[temp]++;
	}

	// 保证个位数相同即可
	int res = summation % 10;
	// 遍历两张牌的组合
	// 两张牌相同与不同的判定条件不同
	// 不同(不重复的遍历)
	for(int i = 0; i <= 8; i++)
		for (int j = i + 1; j <= 9; j++)
		{
			if ((i + j) % 10 == res && counting[i] && counting[j])
			{
				if (res == 0)
					printf("%d", 10);
				else
					printf("%d", res);
				return NULL;
			}
		}
	// 相同
	for (int i = 0; i <= 9; i++)
	{
		if (2 * i % 10 == res && counting[i] >= 2)
		{
			if (res == 0)
				printf("%d", 10);
			else
				printf("%d", res);
			return NULL;
		}
	}

	

	printf("%d", 0);
	return NULL;
}

算法思想

暴力求解

思想

如果去除两张牌的summation,依旧是10的倍数,那么有牛,且这两张牌决定牛几
遍历,求符合要求的两张牌组合

时间复杂度O(n^2)

遍历

优化

思想

如果存在两张牌的组合的个位数,是summation的个位数,那么有牛,且个位数决定牛几
记录不同poker出现次数counting[],使用counting数组求符合要求的两张牌

时间复杂度O(n)

输入,以及输入时求summation和counting数组

细节总结

1、对poker的计数

2、遍历0~9求数组的组合

  1. 不重复
  2. 分类
  3. 只需要确保个位数相同即可(因为1-10的两张牌的组合范围是2~20,尝试过分成res和res+10进行处理,判定繁琐)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值