Problem
给你一棵树,可以在每个点上选择造塔或不造,每座塔可以覆盖这个节点和相邻节点,问覆盖整棵树的最小塔数。
Solution
看到这道题的第一眼,我就觉得是一题贪心题,但看见出题的时候分类在树形DP,于是就没仔细想贪心。
树形DP:f[u][0]表示u被其儿子覆盖,f[u][1]表示u上有塔,f[u][2]表示u被其父亲覆盖,转移显然
贪心:我们dfs到叶子节点时,尽量贪心覆盖它的父亲
Notice
树形DP的状态确实很难想到
Code
树形DP
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; ++i)
#define per(i, a, b) for (reg i = a; i >= b; --i)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 10000;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
struct node
{
int vet, next;
}edge[2 * N + 5];
int ans = 0, flag[N + 5], num = 0, head[N + 5];
inline void add(const int &u, const int &v)
{
edge[++num].vet = v, edge[num].next = head[u], head[u] = num;
edge[++num].vet = u, edge[num].next = head[v], head[v] = num;
}
inline void dfs(reg u, reg fa)
{
reg tt = 0;
travel(i, u)
{
int v = edge[i].vet;
if (v == fa) continue;
dfs(v, u);
if (flag[v]) tt = 1;
}
if (!tt && !flag[u] && !flag[fa])
{
ans++;
flag[fa] = 1;
}
}
int sqz()
{
reg n = read();
rep(i, 1, n - 1) add(read(), read());
dfs(1, 0);
write(ans); puts("");
return 0;
}
贪心
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e8, N = 10000;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int f[N + 5][3], head[N + 5];
int num = 0;
struct node
{
int vet, next;
}edge[2 * N + 5];
void add(int u, int v)
{
edge[++num].vet = v;
edge[num].next = head[u];
head[u] = num;
edge[++num].vet = u;
edge[num].next = head[v];
head[v] = num;
}
void dp(int u, int fa)
{
int sum = 0;
f[u][1] = 1, f[u][0] = INF;
travel(i, u)
{
int v = edge[i].vet;
if (v == fa) continue;
dp(v, u);
f[u][0] = min(f[u][0], f[v][1] - min(f[v][1], f[v][0]));
f[u][1] += min(f[v][0], min(f[v][1], f[v][2]));
f[u][2] += f[v][0];
sum += min(f[v][0], f[v][1]);
}
f[u][0] += sum;
}
int sqz()
{
int n = read();
rep(i, 1, n - 1) add(read(), read());
dp(1, 0);
printf("%d\n", min(f[1][0], f[1][1]));
return 0;
}