bzoj 1596(树形dp)

传送门

题解:

定义dp[0/1/2][i]表示在子树所有节点均被覆盖的前提下,当前节点被子树中的点覆盖/自己覆盖/不被覆盖,需要的通讯塔个数(子树中)

定义dp[2][pos]目的是将其转移给dp[0][father]。

dp[0][p]=∑dp[2][son]

dp[1][p]=∑min{dp[0][son],dp[1][son],dp[2][son]}

dp[2][p]=min{dp[0][son]+∑min{dp[1][other_son],dp[0][other_son]}

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int MAXN=10004;
int n;
int dp[3][MAXN];//0/1/2:不选被覆盖/选了被覆盖/不被覆盖
int head[MAXN],etot=0;
struct EDGE {
	int v,nxt;
}e[MAXN<<1];
inline int read() {
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=x*10+c-'0',c=getchar();
	return x*f;
}
inline void adde(int u,int v) {
	e[etot].nxt=head[u],e[etot].v=v,head[u]=etot++,
	e[etot].nxt=head[v],e[etot].v=u,head[v]=etot++;
}
void dfs(int p,int fa) {
	int temp,sum=0;
	dp[1][p]=1,dp[0][p]=MAXN;
	for (int i=head[p];~i;i=e[i].nxt) {
		int v=e[i].v;
		if (v^fa) {
			dfs(v,p);
			dp[2][p]+=dp[0][v];
			dp[1][p]+=min(dp[2][v],temp=min(dp[0][v],dp[1][v]));
			sum+=temp;
		}
	}
	for (int i=head[p];~i;i=e[i].nxt) {
		int v=e[i].v;
		if (v^fa) dp[0][p]=min(dp[0][p],dp[1][v]-min(dp[1][v],dp[0][v])+sum);
	}
}
int main() {
//	freopen("bzoj 1596.in","r",stdin);
	memset(head,-1,sizeof(head));
	n=read();
	for (register int i=1;i<n;++i) {
		int u=read(),v=read();
		adde(u,v);
	}
	dfs(1,0);
	printf("%d\n",min(dp[0][1],dp[1][1]));
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值