栈和队列_5


一、HZOJ-838

408-集合最小距离
定义三元组(a,b, c)(a,b,c 均为正数)的距离 D=|a-b|+|b-c|+|c-a|。给定 3 个非空整数集合 S1, S2 ,S3, 按升序分别存储在 3 个数组中。请设计一个尽可能高效的算法,计算并输出所有可能的三元组(a, b, c)(a∈S1,b∈S2,c∈S3)中的最小距离。例如 S1={-1, 0, 9}, S2={-25,-10,10,11},S3={2,9,17,30,41},则最小距离为 2,相应的三元组为(9,10,9)。

程序中的主要部分已经帮你写好了,你只需要将如下代码拷贝到你的环境中,并且补充 func函数功能即可。函数功能描述如下:

输入
输入三个参数,分别为存储三个非空集合的队列

输出
返回一个整形值,表示所有可能的三元组(a, b, c)(a∈S1,b∈S2,c∈S3)中的最小距离

样例输入

样例输出


二、题解

1.引库

 #include <iostream>
 #include <cstdio>
 #include <cstdlib>
 #include <queue>
 #include <stack>
 #include <algorithm>
 #include <string>
 #include <map>
 #include <set>
 #include <vector>
 using namespace std;
 

2.代码

1.三个集合的值的绝对值画在数轴上,可以看作最大值与最小值距离的二倍
2.可以从三个集合最小值开始计算据对峙差之和
3.每次只挪动最左边即最小值,直到某一个集合为空

int min_num(int a, int b, int c) {
    if (a > b) swap(a, b);
    if (a > c) swap(a, c);
    return a;
}

int func(queue<int> que1, queue<int> que2, queue<int> que3) {
    //TODO
    int ans=0x3f3f3f3f;//初始化为最大值 
    while(!que1.empty()&&!que2.empty()&&!que3.empty()){
    	int a=que1.front(),b=que2.front(),c=que3.front();
    	int temp_ans=abs(a-b)+abs(c-b)+abs(a-c);
    	if(temp_ans<ans) ans=temp_ans;\
    	int d=min_num(a,b,c);
    	if(a==d) que1.pop();
    	if(b==d) que2.pop();
    	if(c==d) que3.pop();
	}
	return ans;
}

int main() {
    int m, n, k, x;
    queue<int> que1, que2, que3;
    cin >> m >> n >> k;
    for (int i = 0; i < m; i++) {
        cin >> x;
        que1.push(x);
    }
    for (int i = 0; i < n; i++) {
        cin >> x;
        que2.push(x);
    }
    for (int i = 0; i < k; i++) {
        cin >> x;
        que3.push(x);
    }
    cout << func(que1, que2, que3) << endl;
    return 0;
}
 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值