树和二叉树_1
一、树
树包含部分:
- 根节点,长在最上面的节点
- 叶子节点,没有子节点的节点
- 树的深度即高度是同一个,节点的深度是从根节点到当前节点的跳数,节点高度是最深的节点跳数
- 节点数量等于边数加1
- 节点的度等于当前节点的子节点数量
怎么理解树的结构:树的节点代表【集合】,树的边代表【关系】。树的根节点代表全集。
二、广度遍历与深度遍历
广度优先遍历:使用队列,根节点入队,根节点的子节点入队,根节点出队,后面依次重复这个过程。
深度优先遍历:使用栈,根节点入栈,压入根节点的子节点,再依次压入子节点直到没有可压入的就出栈,每次检查栈顶节点有无可压入的子节点。
三、二叉树
- 每个节点度最多为2
- 度为0的节点比度为2的节点多一个
- 分类:完全二叉树:只缺少右侧的节点。左孩子2i,右孩子2i+1,可以用连续空间存储
满二叉树:没有度为1的节点。
完美二叉树:所有层全满的二叉树。 - 用二叉树表示森林:左孩子右兄弟表示法会节省空间。
代码实现:
//二叉树
#include<stdio.h>
#include<stdlib.h>
#include<time.h>
#define MAX_NODE 10
typedef struct Node{
int key;
struct Node *lchild,*rchild;
}Node;
Node *getNewNode(int key){
Node *p=(Node *)malloc(sizeof(Node));
p->key=key;
p->lchild=p->rchild=NULL;
return p;
}
void clear(Node *root){
if(root==NULL) return ;
clear(root->lchild);
clear(root->rchild);
free(root);
return ;
}
Node *insert(Node *root,int key){//设计一个随机插入的方法
if(root==NULL) return getNewNode(key);
if(rand()%2) root->lchild=insert(root->lchild,key);
else root->rchild=insert(root->rchild,key);
return root;
}
Node *queue[MAX_NODE+5];
int head,tail;
void bfs(Node *root){
head=tail=0;
queue[tail++]=root;
while(head<tail){
Node *node=queue[head];
printf("\nnode:%d\n",node->key);
if(node->lchild){
queue[tail++]=node->lchild;
printf("\t->%d(left)\n",node->lchild->key);
}
if(node->rchild){
queue[tail++]=node->rchild;
printf("\t->%d(left)\n",node->rchild->key);
}
head++;
}
}
int tot=0;
void dfs(Node *root){
if(root==NULL) return ;
int start,end;
tot+=1;
start=tot;
if(root->lchild) dfs(root->lchild);
if(root->rchild) dfs(root->rchild);
tot+=1;
end=tot;
printf("%d:[%d,%d]\n",root->key,start,end);
return ;
}
int main(){
srand(time(0));
Node *root=NULL;
for(int i=0;i<MAX_NODE;i++){
root=insert(root,rand()%100);
}
bfs(root);
dfs(root);
return 0;
}
其中:bfs直接输出了二叉树结构,dfs根据时间戳范围大小可以构造二叉树。