题干
实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列。
如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列)。
必须原地修改,只允许使用额外常数空间。
以下是一些例子,输入位于左侧列,其相应输出位于右侧列。
1,2,3 → 1,3,2
3,2,1 → 1,2,3
1,1,5 → 1,5,1
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/next-permutation
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
偏数学型题,数学分析比较重要,分析的对了代码就好写。
首先,我们观察到对于任何给定序列的降序,没有可能的下一个更大的排列。
例如,以下数组不可能有下一个排列:
[9, 5, 4, 3, 1]
我们需要从右边找到第一对两个连续的数字 a[i]
和 a[i−1]
,它们满足a[i]>a[i-1]
。现在,没有对a[i-1]
右侧的重新排列可以创建更大的排列,因为该子数组由数字按降序组成。因此,我们需要重新排列a[i−1]
右边的数字,包括它自己。
现在,什么样子的重新排列将产生下一个更大的数字呢?我们想要创建比当前更大的排列。因此,我们需要将数字a[i-1]
替换为位于其右侧区域的数字中比它更大的数字,例如a[j]
,而且a[j]
是比a[i]
大的数字中最小的那一个。
我们交换数字 a[i-1]
和 a[j]
。我们现在在索引 i−1
处有正确的数字。 但目前的排列仍然不是我们正在寻找的排列。我们需要通过仅使用a[i-1]
右边的数字来形成最小的排列。 因此,我们需要放置那些按升序排列的数字,以获得最小的排列。
但是,在从右侧扫描数字时,a[i−1]
右边的所有数字都已按降序排序。此外,交换a[i−1]
和a[j]
并未改变该顺序,由于我们求的是下一个比它大的数,位数最高的数值应该是最小的。因此,我们只需要反转a[i−1]
之后的数字,以获得下一个最小的字典排列。
如图:
public class Solution {
public void nextPermutation(int[] nums) {
int i = nums.length - 2;
//如果i=-1,那就是全降序
while (i >= 0 && nums[i + 1] <= nums[i]) {
i--;
}
if (i >= 0) {
int j = nums.length - 1;
//后端递减数组里最小的大于nums[i]的数
while (j >= 0 && nums[j] <= nums[i]) {
j--;
}
swap(nums, i, j);
}
//反转nums i+1之后的数据
reverse(nums, i + 1);
}
private void reverse(int[] nums, int start) {
int i = start, j = nums.length - 1;
while (i < j) {
swap(nums, i, j);
i++;
j--;
}
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
复杂度分析
-
时间复杂度:O(n),在最坏的情况下,只需要对整个数组进行两次扫描。
-
空间复杂度:O(1),没有使用额外的空间,原地替换足以做到。