八、正则化

8.1.过拟合问题

正则化:减少过拟合问题
什么是过拟合?

线性回归的过拟合:

在这里插入图片描述
过拟合将在变量过多的时候出现,这时训练出的假设能很好地拟合训练集,所以你的代价函数很可能接近于0,但是你可能会得到上图那样一个曲线,它千方百计地拟合训练集导致它无法泛化到新的样本中(泛化:一个假设模型应用到新样本的能力)。

逻辑回归的过拟合:

在这里插入图片描述
在逻辑回归中我们可以使用多项式无限逼近训练集的决策边界,即过拟合。

减少过拟合的方法:

1.减少特征变量的个数
(1)人工检查变量清单,选择重要的特征变量
(2)模型选择算法
运用这种方法虽然解决了一些问题,但是你也舍弃了一些信息
2.正则化
保留所有的特征变量,减少量级/θ_j,每一个特征变量都能对预测值产生影响。

8.2.代价函数

目标:学习正则化的运行,及正则化的代价函数
在这里插入图片描述
为了应对过拟合问题,我们加入惩罚值,使得 θ 3 θ_3 θ3 θ 4 θ_4 θ4高阶项)非常小。这就意味着我们要最小化其均方误差代价函数(图中修改后的的式子,1000只是代表一个比较大的数)。那就要θ3和θ4尽可能地小,趋近于0。既然θ3和θ4趋近于0,那么代价函数实际上还是个二次函数,因为三次和四次的参数都趋近于0,这样就解决了过拟合问题。
在这里插入图片描述
正则化的思想:
如果我们的参数值较小,意味着一个更简单的假设模型,更不易于过拟合

在这里插入图片描述
举个例子:房屋预测。
假设我们有100个特征,像:房屋大小、房间数量等。和以前的多项式不同,我们并不知道θ3和θ4是高阶项,我们不知道哪个特征相关度较低。
也就是说,我们有101个参数,我们不知道该选出哪些参数来缩小它们的值。
因此,在正则化中,我们要做的是修改线性回归代价函数来缩小所有参数,因为我们不知道哪个参数在高阶项。
修改后的代价函数:
在这里插入图片描述
这就是正则化代价函数,在后面加了一个正则化项,这个项的作用是缩小每一个参数(除了 θ 0 θ_0 θ0),λ是正则化参数。
但是如果我们对每个参数的惩罚值都过大,它们都趋近于0,就剩下一个 θ 0 θ_0 θ0,相当于用直线去拟合数据。
所以为了更好地拟合数据,我们应当选择合适的λ。(后面的多重选择会讲如何自动地选择λ)

8.3.线性回归的正则化

1.梯度下降法最小化J(θ):

在这里插入图片描述
粉红框中就是正则化的代价函数的偏导。蓝框就是线性回归代价函数的偏导。
1-αλ/m略小于1,就像是0.99,θj(1-αλ/m)就是把θj缩小了一点点。
每次迭代时都把θj乘一个略小于1的数,每次都把它缩小一点。
因为我们的惩罚项不包括 θ 0 θ_0 θ0,所以它单独写,不含正则化项。

2.正规方程最小化J(θ):

建立一个设计m×(n+1)维矩阵X,它的每一行都代表一个单独的训练样本。
建立一个m维的向量y,包含训练集里的所有标签。
为了最小化代价函数,让θ等于以下这个式子(正规方程法,详见多元线性回归):
θ = ( X T X ) − 1 X T y \theta=(X^TX)^{-1}X^Ty θ=(XTX)1XTy
这个就是让J(θ)的偏导设为0,反向推出来的θ。
如果J(θ)有正则化项:
在这里插入图片描述

8.3.逻辑回归的正则化

逻辑回归和它的代价函数:
在这里插入图片描述
正则化:
在这里插入图片描述
梯度下降法最小化:
在这里插入图片描述
它同线性回归的正则化的区别是假设函数 h θ ( x ) 不 同 h_\theta(x)不同 hθ(x)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值