本文基于RML2018.01a大型数据集,给出CLDNN的信号识别的实现方式(附代码)
CLDNN谷歌提出的一种CNN(不带池化层)和LSTM的串联结构
本文的CLDNN由5层CNN和1层LSTM构成(可通过增加层数或修改卷积核数量以进一步提高准确率,由于该数据集较大,优化及其费时废机器,博主没有过多优化,准确率在最后给出)
相关内容:
深度学习框架 | Tensorflow+Keras 参考配置请点击这里 |
---|---|
模型 | 相关代码 |
CNN/ResNet | 使用CNN/ResNet实现自动调制识别(RML2018.01a) |
LSTM | 使用LSTM实现自动调制识别(RML2018.01a)) |
CLDNN | 使用CLDNN实现自动调制识别(RML2018.01a)) |
Transformer(RML2016a) | 使用Transformer实现自动调制识别(RML2016.10a,90%+精度(未调参优化)) |
Transformer(RML2018) | 使用Transformer实现自动调制识别(RM |