375D:Tree and Queries
题意简述
给出一棵
n
个结点的树,每个结点有一个颜色
询问
q
次,每次询问以
数据范围
1≤n,q,ci,k≤105
1≤v≤n
思路
恩…数据范围可以莫队搞一发。
先搞出dfs序,这样每个询问都可以是看做询问一段区间。
莫队开搞,需要记录每种颜色的出现次数,和某个出现次数的颜色有多少种。
前者可以
O(1)
修改。
后者我们要询问区间和,所以单点修改可以用树状数组维护。
这样我们就得到了一个复杂度为
O(nlognn√)
的优秀做法啦。
TTT…
观察一下可以发现每次我们查询的区间都是它的一个后缀和,每次修改影响的只是一个点。
ok我们可以开一个数组维护后缀和,这样修改也变成了
O(1)
时间复杂度
O(nn√)
UPD:
观察了一下别人的姿势……
此题有
O(nlog2n)
和
O(nlogn)
的做法。
O(nlog2n)
:dfs从叶到根处理询问,用map维护上面的两个数组,回溯时启发式合并到根。
O(nlogn)
:全局维护上面的两个数组。用上述莫队的方法
O(1)
处理单点的加入和删除。
对于每一棵子树,统计它的时候需要先把它的子树统计完,在把它子树中所有点加入数组,但是这样是
O(n2)
的。
观察到回溯到最后一棵子树时,它的点不需要重复加入。
进行树链剖分,每次优先进行非重链的递归。
相当于是把这条重链下面的重链合并到了它上面,树链剖分将树剖分成了不吵过
logn
条重链,每个结点最多删除/加入
logn
次。
时间复杂度
O(nlogn)
后面的做法代码先坑着0.0
UPD2:
第二种做法代码已更新。
NOIP2016D1T2可以用这种方法做。
代码
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
struct edge{
int s,t,next;
}e[200010];
int head[100010],cnt;
void addedge(int s,int t)
{
e[cnt].s=s;e[cnt].t=t;e[cnt].next=head[s];head[s]=cnt++;
e[cnt].s=t;e[cnt].t=s;e[cnt].next=head[t];head[t]=cnt++;
}
int n,q,lim,order,u,v;
int color[100010],seq[100010],dfn[100010],rdfn[100010],num[100010],tot[100010],ans[100010];
struct ask{
int l,r,k,id;
bool operator < (const ask &n1) const
{
return l/lim==n1.l/lim ? r<n1.r : l/lim<n1.l/lim;
}
}a[100010];
void dfs(int node,int lastfa)
{
dfn[node]=++order;
seq[order]=color[node];
for (int i=head[node];i!=-1;i=e[i].next)
if (e[i].t!=lastfa)
dfs(e[i].t,node);
rdfn[node]=order;
}
void init()
{
scanf("%d%d",&n,&q);
lim=int(sqrt(n));
memset(head,0xff,sizeof(head));
cnt=0;
for (int i=1;i<=n;i++)
scanf("%d",&color[i]);
for (int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
dfs(1,1);
for (int i=1;i<=q;i++)
{
scanf("%d%d",&u,&v);
a[i].l=dfn[u],a[i].r=rdfn[u],a[i].k=v,a[i].id=i;
}
sort(a+1,a+q+1);
}
void work()
{
int l=a[1].l,r=a[1].l;
tot[++num[seq[l]]]++;
for (int i=1;i<=q;i++)
{
while (l<a[i].l)
{
tot[num[seq[l]]--]--;
l++;
}
while (l>a[i].l)
{
l--;
tot[++num[seq[l]]]++;
}
while (r<a[i].r)
{
r++;
tot[++num[seq[r]]]++;
}
while (r>a[i].r)
{
tot[num[seq[r]]--]--;
r--;
}
ans[a[i].id]=tot[a[i].k];
}
for (int i=1;i<=q;i++)
printf("%d\n",ans[i]);
}
int main()
{
init();
work();
return 0;
}
第二种做法的代码
#include<cstdio>
#include<cstring>
using namespace std;
struct edge{
int s,t,next;
}e[400010];
int head[200010],cnt;
void addedge(int s,int t)
{
e[cnt].s=s;e[cnt].t=t;e[cnt].next=head[s];head[s]=cnt++;
e[cnt].s=t;e[cnt].t=s;e[cnt].next=head[t];head[t]=cnt++;
}
struct ask{
int pos,val,id,next;
}a[100010];
int head_m[200010],cnt_m;
void addmodi(int _pos,int _val,int _id)
{
a[cnt_m].pos=_pos,a[cnt_m].val=_val;a[cnt_m].id=_id;a[cnt_m].next=head_m[_pos];head_m[_pos]=cnt_m++;
}
int n,m,u,v;
int c[200010];
int size[200010],son[200010],tot[100010],num[100010],ans[100010];
void dfs(int node,int lastfa)
{
size[node]=1;
son[node]=0;
for (int i=head[node];i!=-1;i=e[i].next)
if (e[i].t!=lastfa)
{
dfs(e[i].t,node);
size[node]+=size[e[i].t];
if (size[e[i].t]>size[son[node]])
son[node]=e[i].t;
}
}
void decc(int node,int lastfa)
{
tot[num[c[node]]--]--;
for (int i=head[node];i!=-1;i=e[i].next)
if (e[i].t!=lastfa)
decc(e[i].t,node);
}
void addd(int node,int lastfa)
{
tot[++num[c[node]]]++;
for (int i=head[node];i!=-1;i=e[i].next)
if (e[i].t!=lastfa)
addd(e[i].t,node);
}
void dfs2(int node,int lastfa)
{
for (int i=head[node];i!=-1;i=e[i].next)
if (e[i].t!=lastfa&&e[i].t!=son[node])
{
dfs2(e[i].t,node);
decc(e[i].t,node);
}
if (son[node]!=0)
dfs2(son[node],node);
for (int i=head[node];i!=-1;i=e[i].next)
if (e[i].t!=lastfa&&e[i].t!=son[node])
addd(e[i].t,node);
tot[++num[c[node]]]++;
for (int i=head_m[node];i!=-1;i=a[i].next)
ans[a[i].id]=tot[a[i].val];
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
scanf("%d",&c[i]);
memset(head,0xff,sizeof(head));
cnt=0;
for (int i=1;i<n;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
dfs(1,1);
memset(head_m,0xff,sizeof(head_m));
cnt_m=0;
for (int i=1;i<=m;i++)
{
scanf("%d%d",&u,&v);
addmodi(u,v,i);
}
dfs2(1,1);
for (int i=1;i<=m;i++)
printf("%d\n",ans[i]);
return 0;
}