[CF375D]Tree and Queries

375D:Tree and Queries

题意简述

给出一棵 n 个结点的树,每个结点有一个颜色ci
询问 q 次,每次询问以v结点为根的子树中,出现次数 k 的颜色有多少种。

数据范围

1n,q,ci,k105
1vn

思路

恩…数据范围可以莫队搞一发。
先搞出dfs序,这样每个询问都可以是看做询问一段区间。
莫队开搞,需要记录每种颜色的出现次数,和某个出现次数的颜色有多少种。
前者可以 O(1) 修改。
后者我们要询问区间和,所以单点修改可以用树状数组维护。
这样我们就得到了一个复杂度为 O(nlognn) 的优秀做法啦。
TTT…
观察一下可以发现每次我们查询的区间都是它的一个后缀和,每次修改影响的只是一个点。
ok我们可以开一个数组维护后缀和,这样修改也变成了 O(1)
时间复杂度 O(nn)
UPD:
观察了一下别人的姿势……
此题有 O(nlog2n) O(nlogn) 的做法。
O(nlog2n) :dfs从叶到根处理询问,用map维护上面的两个数组,回溯时启发式合并到根。
O(nlogn) :全局维护上面的两个数组。用上述莫队的方法 O(1) 处理单点的加入和删除。
对于每一棵子树,统计它的时候需要先把它的子树统计完,在把它子树中所有点加入数组,但是这样是 O(n2) 的。
观察到回溯到最后一棵子树时,它的点不需要重复加入。
进行树链剖分,每次优先进行非重链的递归。
相当于是把这条重链下面的重链合并到了它上面,树链剖分将树剖分成了不吵过 logn 条重链,每个结点最多删除/加入 logn 次。
时间复杂度 O(nlogn)
后面的做法代码先坑着0.0
UPD2:
第二种做法代码已更新。
NOIP2016D1T2可以用这种方法做。

代码

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
struct edge{
    int s,t,next;
}e[200010];
int head[100010],cnt;
void addedge(int s,int t)
{
    e[cnt].s=s;e[cnt].t=t;e[cnt].next=head[s];head[s]=cnt++;
    e[cnt].s=t;e[cnt].t=s;e[cnt].next=head[t];head[t]=cnt++;
}
int n,q,lim,order,u,v;
int color[100010],seq[100010],dfn[100010],rdfn[100010],num[100010],tot[100010],ans[100010];
struct ask{
    int l,r,k,id;
    bool operator < (const ask &n1) const
    {
        return l/lim==n1.l/lim ? r<n1.r : l/lim<n1.l/lim;
    }
}a[100010];

void dfs(int node,int lastfa)
{
    dfn[node]=++order;
    seq[order]=color[node];
    for (int i=head[node];i!=-1;i=e[i].next)
        if (e[i].t!=lastfa)
            dfs(e[i].t,node);
    rdfn[node]=order;
}

void init()
{
    scanf("%d%d",&n,&q);
    lim=int(sqrt(n));
    memset(head,0xff,sizeof(head));
    cnt=0;
    for (int i=1;i<=n;i++)
        scanf("%d",&color[i]);
    for (int i=1;i<n;i++)
    {
        scanf("%d%d",&u,&v);
        addedge(u,v);
    }
    dfs(1,1);
    for (int i=1;i<=q;i++)
    {
        scanf("%d%d",&u,&v);
        a[i].l=dfn[u],a[i].r=rdfn[u],a[i].k=v,a[i].id=i;
    }
    sort(a+1,a+q+1);
}
void work()
{
    int l=a[1].l,r=a[1].l;
    tot[++num[seq[l]]]++;
    for (int i=1;i<=q;i++)
    {
        while (l<a[i].l)
        {
            tot[num[seq[l]]--]--;
            l++;
        }
        while (l>a[i].l)
        {
            l--;
            tot[++num[seq[l]]]++;
        }
        while (r<a[i].r)
        {
            r++;
            tot[++num[seq[r]]]++;
        }
        while (r>a[i].r)
        {
            tot[num[seq[r]]--]--;
            r--;
        }
        ans[a[i].id]=tot[a[i].k];
    }
    for (int i=1;i<=q;i++)
        printf("%d\n",ans[i]);
}

int main()
{
    init();
    work();
    return 0;
}

第二种做法的代码

#include<cstdio>
#include<cstring>
using namespace std;
struct edge{
    int s,t,next;
}e[400010];
int head[200010],cnt;
void addedge(int s,int t)
{
    e[cnt].s=s;e[cnt].t=t;e[cnt].next=head[s];head[s]=cnt++;
    e[cnt].s=t;e[cnt].t=s;e[cnt].next=head[t];head[t]=cnt++;
}
struct ask{
    int pos,val,id,next;
}a[100010];
int head_m[200010],cnt_m;
void addmodi(int _pos,int _val,int _id)
{
    a[cnt_m].pos=_pos,a[cnt_m].val=_val;a[cnt_m].id=_id;a[cnt_m].next=head_m[_pos];head_m[_pos]=cnt_m++;
}
int n,m,u,v;
int c[200010];
int size[200010],son[200010],tot[100010],num[100010],ans[100010];
void dfs(int node,int lastfa)
{
    size[node]=1;
    son[node]=0;
    for (int i=head[node];i!=-1;i=e[i].next)
        if (e[i].t!=lastfa)
        {
            dfs(e[i].t,node);
            size[node]+=size[e[i].t];
            if (size[e[i].t]>size[son[node]])
                son[node]=e[i].t;
        }
}
void decc(int node,int lastfa)
{
    tot[num[c[node]]--]--;
    for (int i=head[node];i!=-1;i=e[i].next)
        if (e[i].t!=lastfa)
            decc(e[i].t,node);
}
void addd(int node,int lastfa)
{
    tot[++num[c[node]]]++;
    for (int i=head[node];i!=-1;i=e[i].next)
        if (e[i].t!=lastfa)
            addd(e[i].t,node);
}
void dfs2(int node,int lastfa)
{
    for (int i=head[node];i!=-1;i=e[i].next)
        if (e[i].t!=lastfa&&e[i].t!=son[node])
        {
            dfs2(e[i].t,node);
            decc(e[i].t,node);
        }
    if (son[node]!=0)
        dfs2(son[node],node);
    for (int i=head[node];i!=-1;i=e[i].next)
        if (e[i].t!=lastfa&&e[i].t!=son[node])
            addd(e[i].t,node);
    tot[++num[c[node]]]++;
    for (int i=head_m[node];i!=-1;i=a[i].next)
        ans[a[i].id]=tot[a[i].val];
}
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=n;i++)
        scanf("%d",&c[i]);
    memset(head,0xff,sizeof(head));
    cnt=0;
    for (int i=1;i<n;i++)
    {
        scanf("%d%d",&u,&v);
        addedge(u,v);
    }
    dfs(1,1);
    memset(head_m,0xff,sizeof(head_m));
    cnt_m=0;
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d",&u,&v);
        addmodi(u,v,i);
    }
    dfs2(1,1);
    for (int i=1;i<=m;i++)
        printf("%d\n",ans[i]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值