自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(188)
  • 收藏
  • 关注

转载 求解整数规划问题的割平面法和分支定界法

基于Python调用ortools求解整数规划问题的代码,和此前介绍的线性规划代码的唯一不同点在于:整数规划中优化变量的定义是solver.IntVar,而线性规划中的定义方式是solver.NumVar。虽然割平面法和分支定界法的步骤看起来挺多的,但好在,求解器已经帮我们做好了集成的工作,所以我们可以直接调用现成的求解器来求解所遇到的整数规划问题。此外,我们很容易发现,x=(0,0)是P的一个可行解,此时f=0,P的最优解f*不会高于该值,所以P的上界是。显然,该解和上一节推演的结果是一致的。

2025-01-27 12:32:07 59

转载 模拟退火算法求解 0-1 背包问题

背包问题的目标是在给定物品和约束条件下,选择一定的物品,使得它们的总价值最大,同时满足总重量不超过给定的限制。模拟退火是一种基于概率的优化算法,主要用于解决,尤其适用于解决非线性、不规则的优化问题。

2025-01-24 12:07:12 22

转载 求解包含约束的最优化问题:罚函数法

(2)即使可以推导出梯度公式,但是随着M的增加,在边界处的梯度值越来越大,当M已经极大时,可能会出现梯度爆炸的现象,而很多问题的最优解恰恰是在边界处取得,这就会给数值计算带来较大误差,下图中,由于加入了惩罚项,边界处(两个圆点)的左右值显然变化很大。其次,P1中的x事实上并没有约束,所以其范围可以从可行域扩展到整个实数域,因为x的可选范围增加了,所以P1还有机会找到更好的解,所以P≥P1。当然,以上过程是通过朴素的认知推演出来的。然后,在P1中,如果只看M,其系数为正,所以是单调递增的,即如果存在。

2025-01-23 14:47:45 59

转载 用遗传算法解决VRP问题

我们研究的VRP问题模型如下所示。如图,某地有一配送中心,负责将货物配送到指定的各个配送点。每个配送点有一定的货物需求量,用货物重量表示。配送中心有若干辆车,每辆车有一定的载重量和里程限制,车的载重和行驶里程不可超过指定的值。一辆车可负责一个或多个点的配送任务,且每个配送点只被服务一次。在某一时刻,所有负责配送的车同时从配送中心出发,分别完成各自的配送任务后,再回到配送中心。根据以上条件,设计一个最优配送方案。对于每个方案,应给出每辆车负责的配送点及其先后顺序。上图显示了一个三辆车的配送方案。

2025-01-21 11:51:32 52

转载 【数学建模】求解混合整数线性规划 MILP 问题

混合整数线性规划(Mixed Integer Linear Programming,MILP)是一类优化问题,其中目标函数和约束条件均为线性,并且包含整数变量。MILP 在实际应用中具有广泛的应用,可以解决很多实际问题,如生产调度、网络设计、资源分配等。f — 系数向量。系数向量,指定为实数向量或实数数组。intcon — 整数约束组成的向量。整数约束组成的向量,指定为正整数向量。intcon 中的值指示决策变量 x 中应取整数值的分量。A — 线性不等式约束。线性不等式约束,指定为实矩阵。

2025-01-16 14:24:05 174

转载 混合整数规划建模、求解TSP、VRP问题

TSP和VRP是在运输领域中常见的两个重要问题。这两个问题在不同的场景中都需要求解最优的路径或路线,以降低运输成本、优化资源利用效率。MIP(混合整数规模模型)是一种常用的数学建模方法,可以有效地解决这些问题。对于小规模的TSP、VRP问题,可以使用MIP数学建模方法来快速求解。本文介绍通过pulp来建立MIP模型,来求解TSP和VRP问题。

2025-01-15 11:25:22 37

转载 为什么拉格朗日乘子法可以处理带约束最优化问题?

最优化问题是指在一组变量中,寻找一个最优解,使得某个目标函数达到最大值或最小值,同时满足一些约束条件。一个典型的最优化问题可以表示为:其中,f(,......,)是目标函数,,......,)是约束条件,m 是约束的数量。传统的最优化方法,如直接对目标函数进行求导和求解,通常无法有效处理约束条件。拉格朗日乘子法的作用就是通过构造一个新的函数,将约束条件纳入其中,从而把带约束的最优化问题转化为一个无约束的问题。

2025-01-14 12:25:50 175

原创 玻色量子Kaiwu怎么在anaconda里面进行安装?

这里提示一下,因为Kaiwu这边会夹带一些常用库,所以新环境是不用担心这个numpy和pandas没有的,会自动安装。,注意要在anaconda的new的下拉菜单中确保正常显示这个环境,确保下次打开是有的。”,免费领取【人人皆可使用的】量子计算算力,以及开发工具包等学习资料。:总结一下就是让你创造的新环境在anaconda里面有选项。弄好之后重新打开一下anaconda,再去跑一下代码就好。注意一下:myenv这个是你取的名字,是什么没影响。好啦,本次分享就到这里,欢迎使用玻色量子。

2025-01-13 12:03:18 276

转载 模拟退火算法在生物信息学中的应用

模拟退火算法(Simulated Annealing, SA)是一种基于物理退火过程的全局优化算法。其核心思想源于固体退火原理,即通过加热使固体内部的原子达到无序状态,再缓慢冷却使其逐渐趋于有序,最终达到能量最低的状态。在算法设计中,这一过程被抽象为求解优化问题的策略:通过模拟加热和冷却过程,使系统在解空间中进行全局搜索,并在冷却过程中逐渐收敛到全局最优解。具体来说,模拟退火算法通过设定初始温度、冷却速率、终止温度等参数,控制搜索过程。

2025-01-10 16:00:39 720

转载 数值优化——KKT条件与PHR增广拉格朗日乘子法

我们在Uzawa’s Method来看待增广拉格朗日方法,我们知道,在运用Uzawa’s Method时所获得的d(λ)可能梯度是不连续的,如图中所示,这样的函数依靠sub-gradent难以收敛到最小值。而采用拉格朗日增广方法,如果我们先验的λ*存在(如图),那么我们得到的最优λ*(k+1)将会是下一次的先验值。除此之外,我们将增广拉格朗日方法所得到的d(λ)绘制出来就是图中的d(λ-),我们可以看到,这个函数不仅是一阶导数连续,而且其最优解与采用Uzawa’s Method所获得的最优解是一模一样的。

2025-01-09 11:57:52 56

转载 最优化问题 -- 从无约束优化到不等式约束优化

最优化问题可以分为无约束优化问题、等式约束优化问题和不等式约束优化问题。最令人头疼的就是不等式约束问题,然而它又是最常用的。接下来将针对每一种优化问题展开讲述,逐步展开是。

2025-01-07 14:30:53 127

转载 动态规划——问题特征与步骤精解

动态规划是一种高效的算法思想,在计算机科学和优化问题领域得到了广泛的应用。其核心在于解决具有最优子结构和重叠子问题的问题。最优子结构意味着一个问题的最优解可以通过其子问题的最优解递归构建,这使得问题可以被逐步分解为较小的子问题来求解。而重叠子问题的特性使得相同的子问题在递归过程中可能会被多次求解,因此动态规划通过保存子问题的解来避免重复计算,大大提高了算法的效率。动态规划通常通过构建一个递推关系式(状态转移方程)来求解问题,自底向上地逐步计算每个子问题的最优解,并最终获得整体问题的解。

2025-01-03 17:11:52 117

转载 算法典型例题:N皇后问题,五种解法,逐步优化(非递归版)

本文将介绍N皇后问题的五种解法,包括朴素回溯法、对称优化、标记优化、可用优化、位运算优化,对于每种解题思路,提供相应的非递归版代码实现,最后将对每种解法进行测试,横向对比每种解法的求解时间。

2025-01-02 15:44:23 210

转载 机器学习笔记——损失函数、代价函数和KL散度

KL散度是一种广泛应用于机器学习和深度学习中的度量工具,尤其是在涉及概率分布的场景中。其主要用于衡量模型预测的分布与真实分布的差异,并通过最小化KL散度来优化模型表现。具体应用场景包括:● 变分自编码器中的潜在分布优化● 分类任务中的交叉熵损失● 强化学习中的策略更新约束● 生成模型中的分布正则化通过将KL散度引入损失函数,模型可以在复杂任务中更好地平衡生成质量、分布匹配以及策略优化的需求。玻色量子开发者社区,并于公众号后台回复“CSDN。

2024-12-30 17:34:57 276

转载 观测能让波函数坍缩,能不能有什么办法,把坍缩了的粒子反向拉回量子叠加态?

量子叠加态和波函数坍缩是量子力学中最富有争议和深奥的概念之一。当一个量子系统被观测后,波函数坍缩至某个确定状态,这种坍缩过程看似不可逆。然而,近年来的研究表明,通过量子擦除、纠缠交换和反向时间演化等技术,有可能部分地恢复系统的叠加态。设想这样一个场景:一个电子以量子叠加态穿过双缝实验装置,在屏幕上留下干涉条纹。然而,当我们试图观测电子通过哪一条缝时,干涉图样立即消失,电子的波函数坍缩至单一位置。这个结果似乎告诉我们,量子世界的“魔法”在观测的瞬间终结。

2024-12-27 14:57:28 159

转载 矩阵分解算法

矩阵分解就是预测出评分矩阵中的缺失值,然后根据预测值以某种方式向用户推荐。常见的矩阵分解方法有基本矩阵分解(basic MF),正则化矩阵分解)(Regularized MF),基于概率的矩阵分解(PMF)等。矩阵分解,直观上来说就是把原来的大矩阵,近似分解成两个小矩阵的乘积,在实际推荐计算时不再使用大矩阵,而是使用分解得到的两个小矩阵。

2024-12-26 15:23:59 109

转载 【整数规划】Benders 分解(理论分析+Python代码实现)

当然需要注意的是优化问题(1.5)是以 y 作为参数的,给一个 y 的值通过求解优化问题(1.5)就可以得到与之对应的 ϕ(y)。之前也说过了原问题可行不可行的关键就是在于极方向集合(1.7),而极方向实际上就是对偶问题的约束,这样转化到对偶问题之后方便我们在主问题里边利用对偶变量的信息 u 来构造cut,这一点在这里大家有点初步体会,在后边会看得更清楚。因为子问题的对偶问题为unbounded,所以子问题的原问题是 不可行的,可以得到其极方向为 v=(1,0,...,0)T 接下来到Step 4。

2024-12-23 15:47:58 166

转载 寻找最优解的算法-模拟退火算法(Simulated Annealing)

模拟退火是一种启发式算法,灵感来源于金属退火的物理过程。在金属加热到高温后,逐渐冷却,金属分子会从不规则的结构调整为更稳定、更低能量的状态。模拟退火算法通过模拟这一过程来寻找问题的全局最优解。该算法在搜索空间中进行随机搜索,通过“接受”不太好的解来避免陷入局部最优解,最终朝着全局最优解逼近。模拟退火算法是一个强大的全局优化算法,广泛应用于各种实际问题中。通过模拟物理退火的过程,算法能够避免局部最优解的困境,最终找到全局最优解。

2024-12-20 12:07:38 71

转载 从三体问题到科技前沿:AI与量子计算的融合突破

刘慈欣的科幻小说《三体》以其宏大的宇宙观和深刻的科学思考震撼了全球读者。小说中描绘的三体文明面临着一个根本性的难题:他们的母星处于三颗恒星的引力作用下,导致气候和环境极度不稳定,难以预测。这个文学构想源于现实中的"三体问题",一个困扰科学家数百年的天体力学难题。三体问题不仅是一个数学和物理学的挑战,更是人类探索宇宙、理解复杂系统的一个缩影。它在其他领域也有广泛的应用,例如在气候模型中,科学家们试图预测复杂的气候变化模式,这涉及多个相互作用的非线性系统。

2024-12-19 12:00:37 260

转载 量子力学中,为什么观测会导致坍缩?

量子力学为我们揭示了一个奇妙而不可思议的微观世界,在这个世界里,粒子可以同时存在于多个位置,也可以表现出波动性和粒子性的双重特性。然而,这一切在我们进行观测时会发生改变。粒子的叠加态会突然消失,系统进入某一个确定的状态。这种现象被称为“波函数坍缩”,也是量子力学中最神秘、最引发争议的部分。它不仅涉及到微观粒子,还暗示了人类意识与物质世界之间可能存在的深刻联系。那么,究竟是什么让“观测”具有如此深远的影响?

2024-12-18 14:03:12 444

转载 【智能优化算法】 —— 一文搞懂模拟退火

模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。Nicolas Metropolis于1915年6月11日出生在美国芝加哥。Metropolis在芝加哥大学获得理学学士(1936年)和化学物理学博士(1941年)。在他读博士期间,他和罗伯特·穆肯一起工作。毕业后,他在芝加哥大学任讲师,师从詹姆斯·弗兰克。

2024-12-17 12:25:32 201

转载 神经网络中的损失函数(Loss Function)

损失函数(Loss Function)作为神经网络中的一个评估指标,用于衡量神经网络输出与真实标签之间的差异或误差。损失函数通常是一个非负实数函数,表示为L(Y, f(X)),其中Y是实际值(也称为标签或真实值),f(X)是模型的预测值(也称为输出值或估计值),X是输入数据。损失函数的值越小,表示模型的预测结果与实际值越接近,模型的性能也就越好。根据特定任务的需求,可以设计自定义的损失函数。例如,在某些应用中,可能需要更关注于某些特定类型的误差或引入额外的约束条件。

2024-12-16 14:12:04 391

原创 机器学习笔记之深度玻尔兹曼机——玻尔兹曼机系列整体介绍

因此,叠加RBM结构是基于训练出更优秀的P ( h ),从而产生更优秀的P ( v ) 的一种思想。块吉布斯采样的优势在于,由于隐变量、观测变量内部随机变量之间条件独立,因此关于随机变量的采样均可同步进行,而不需要使用基于‘坐标上升法’的吉布斯采样方式。但这种表示仅是通过梯度上升法对模型参数更新时,P ( h ) 仅是被联代着被更新,可能并没有达到当前迭代步骤关于P ( h ) 的最优解。玻尔兹曼机本质上是一个马尔可夫随机场(无向图模型),概率图中的随机变量结点均是服从伯努利分布的离散型随机变量。

2024-12-13 18:35:23 1087

原创 基于光量子计算机的虚拟电厂解聚合问题论文的分享

给出了图2所述状态对应的4种资源在各个时段的调用情况:第一个时段内资源4功率下调5MW,第二个时段内资源2功率下调5MW,第三个时段内资源1功率下调5MW,第四个时段内资源4功率上调5MW,第五个时段无功率调节,第六个时段内资源2和资源3分别上调功率5MW,第七个时段内资源1功率上调5MW,第八个时段内资源3功率下调5MW。2)所提出的考虑虚拟电厂运行特征的冗余约束辨识方法与量子比特共用机制,显著减少了 QUBO问题求解所需的量子比特数量,假设1:所有分布式资源均具有固定的上调或者下调功率,均为 5MW。

2024-12-12 14:20:53 840

原创 量子框架下新型电力系统优化问题建模

将式(2)作为VQA框架下的目标函数,其中,与σiσj相关的二次项可以被映射到量子比特之间的相互作用大小,与σj相关的一次项则表示量子比特自身的能量状态,通过调整VQA中的变分参数不断优化量子态来最小化式(2),从而获得最优化问题式(1)的最优解。而对于NISQ时代的量子计算机,由于不可避免的噪声干扰,求解规模的增加意味着整个量子系统可靠性的降低,一旦出现其中一个量子演化失败的情况,前期的迭代结果将全部作废,量子计算机将需要重新执行计算过程。3)量子计算的速度优势可打破新型电力系统面临的计算效率瓶颈。

2024-12-11 12:24:17 627

原创 二次分配问题的二次无约束二进制优化模型转化方法

即阶乘的增长速度。实验部分的设计采用了QAPLIB中的多组标准实例,涵盖了不同规模和复杂度的问题,从小规模的esc16a到大规模的chr100a。这些实例的选择旨在全面评估工具在不同问题规模下的性能,包括从QAP到QUBO的转换时间、生成的QUBO矩阵的维度以及实际求解的效率。二次分配问题(Quadratic Assignment Problem,简称QAP)是组合优化领域中最经典的难题之一,其定义是在一组设施和位置之间进行最优分配,使得设施之间的流量和位置之间的距离的加权总和最小化。

2024-12-10 16:23:48 818

转载 什么是斩获诺奖的量子玻尔兹曼机

定义与量子态相关的能量函数,通常与哈密顿量有关。能量函数用于描述系统的总能量,并影响量子态的演化。3.

2024-12-06 15:16:29 134

原创 一种量子-经典计算混合的变分量子决策优化框架

近年来,量子计算领域取得的一系列突破使应用量子计算机求解经典计算机难以求解的问题成为可能,量子优化算法的概念被提出并率先在量子化学、凝聚态物理以及离散数学等领域获得了广泛应用。量子计算是一种利用量子态的属性(如叠加、纠缠和相干)执行运算过程的新兴技术。量子优化算法利用量子计算机对量子比特进行操控,以量子演化的方式进行寻优。相比于经典优化算法,量子优化算法在求解效率上具有明显优势,对于新型电力系统中特定的MIP问题,量子计算机理论上可在接近多项式级时间内完成求解。

2024-12-05 15:51:43 719

原创 案例解析-任务调度问题(附量子计算对比)

各个任务所需的运行时间以及各机器空闲开始时间取值为整数(比如取定义的时间精度的整数倍)。这样做便于将组合优化模型转为QUBO(Quadratic Unconstrained Binary Optimization,二次无约束二值优化)形式,以适配专用量子计算机。为了规范化表述,将多机任务调度问题用到的集合与数据做以下定义:定义机器集合M,比如M={机器1,机器2,...},机器的数量表示为|M|。定义任务集合N,比如N={任务1,任务2,...},任务的数量表示为|N|。定义任务 i。

2024-12-03 14:10:51 897

转载 详解“量子极限下运行的光学神经网络”——相干伊辛机

量子计算和量子启发计算可能成为解答复杂优化问题的新前沿,而经典计算机在历史上是无法解决这些问题的。当今最快的计算机可能需要数千年才能完成高度复杂的计算,包括涉及许多变量的组合优化问题;研究人员正在努力将解决这些问题所需的时间缩短到几秒钟。纵观全球科研团队,中国、日本(例如NTT研究所、东京工业大学和东京大学等)、美国(加州理工学院、哈佛大学、麻省理工学院、圣母大学、斯坦福大学、康奈尔大学、密歇根大学等)各界团队一直在探索利用量子和经典计算混合原理的尖端计算系统,。

2024-12-02 17:12:53 206

转载 【数学建模】智能算法笔记

如何实现智能?高大上的方式是剪枝,很容易想到的是随机,人的特性就是不稳定,机器才是极端稳定,极度稳定未必就比略微的不稳定好。所以记住随机这个核心。

2024-11-29 11:53:42 75

转载 宏观世界中为什么没有量子纠缠现象?

量子纠缠是量子力学中的一种非经典现象,最早由爱因斯坦、波多尔斯基和罗森(EPR)在1935年提出,以质疑量子力学的完备性。当两个或多个粒子的量子态彼此关联时,即使它们在空间上分离,其状态依然可以通过一个整体波函数来描述。这种关联称为量子纠缠。例如,当两个电子的自旋处于纠缠态时,如果测量一个电子的自旋方向,另一个电子的自旋方向将立即确定,无论两者之间的距离有多远。量子纠缠在宏观世界中并没有的根本原因在于退相干、经典物理的主导及系统复杂性等因素。

2024-11-28 11:59:42 120

原创 为什么物理里很多分析都用哈密顿量来分析?

哈密顿量是物理系统总能量的函数,用来描述动力学系统的状态和演化规律。在经典力学中,哈密顿量 H 通常被定义为系统的总能量,即动能 T 和势能 V 的总和:H = T + V哈密顿量作为能量的数学表达,统一了经典与量子物理学的理论框架。其核心思想——对称性与守恒律——贯穿物理学的多个领域,为分析复杂系统提供了强有力的工具。在未来研究中,哈密顿量有望继续在量子计算、非平衡态物理、以及新材料研究中发挥更大作用。玻色量子开发者社区,并在公众号后台回复“CSDN”,获取更多量子相关学习资料。

2024-11-27 17:28:56 1152

原创 量子前沿英雄谱|引领量子科技三十年:斯坦福&NTT教授Yoshihisa Yamamoto

Yoshihisa Yamamoto(山本喜久)教授是国际量子科技领域的近30年来的泰斗之一,也是斯坦福大学应用物理与电气工程的名誉教授。他领导的研究实验室专注于量子光学和量子信息处理30多年。Yamamoto教授也是日本国家量子 ...Yoshihisa Yamamoto(山本喜久)教授是国际量子科技领域的近30年来的泰斗之一,也是斯坦福大学应用物理与电气工程的名誉教授。他领导的研究实验室专注于量子光学和量子信息处理30多年。

2024-11-25 18:17:06 835

原创 从家用彩电到量子计算,背后竟然都有他:东京大学荒川泰彦教授

如此快的晋升速度,在当下非升即走的氛围中略显不可思议,其实这与东京大学当时施行的政策有关:由于教授无需负责学生的工资,故而省去了经费申请方面的精力消耗,这才令荒川泰彦教授拿到教职后,得以潜心研究深感兴趣的半导体量子现象,最终产出科研成果。通过将多个量子点耦合在一起,可以实现量子比特之间的相互作用,这是实现量子门操作和量子纠缠的关键。量子点应用于显示技术中,能够大幅提升画面的色彩表现力和亮度,呈现更多细节,而且量子点材料的物理特性稳定,耐候性也不错,像在南方高温、高湿的环境中,也有较为优秀的使用寿命。

2024-11-18 18:03:05 1058

原创 量子前沿英雄谱|光量子计算的前沿探险家:Jeremy O‘Brien

这项技术创新摆脱了以往对非线性光学设备的依赖,而是通过量子测量和干涉效应,模拟出这些相互作用,最终首个实现光量子比特之间的逻辑门操作,不仅展示了线性光学在量子计算中的巨大潜力,使光量子计算更加稳定和易于扩展,也为全光量子计算提供了一条全新的技术路径。O'Brien 团队的研究表明,光子作为量子比特不仅具备优越的相干时间和抗噪声特性,还能够通过相对简单的器件实现复杂的量子操作,更解决了长期制约光量子计算发展的一大关键障碍,即如何通过可扩展、稳定的光子系统实现复杂量子计算,从而迈向基于光量子的通用量子计算机。

2024-11-14 18:43:09 1129

转载 量子计算机和传统计算机相比,在处理大数据时有哪些优势?

最近,玻色量子与大连海事大学聚焦物流行业,围绕“量子计算+ 物流”行业取得了实用化场景应用的成功,相关研究成果以 《Quantum computing for several AGV scheduling models量子计算应用于多种AGV调度模型》 为题,发表在学术期刊Scientific Reports上,金融领域,玻色量子的量子计算信用评分特征筛选模型,通过高效的特征筛选,在帮助银行构建更简单、更易理解的模型的同时,大幅降低了模型训练所需的算力与时间成本。而在图形渲染领域,玻色量子针对。

2024-11-08 15:34:10 133

原创 量子前沿英雄谱|Robert Byer

与超导、离子阱等使用逻辑门计算架构的其他技术路线相比,CIM是一种完全不同的量子计算机,是了采用光量子耗散式架构,利用量子失谐而不是量子纠缠作为计算资源,更加类似于人脑神经突触的工作模式,天然更适合于形成超大规模的量子神经网络,对环境噪声和错误有很强的抵抗力。进入21世纪,Byer在学术界的地位更是越发重要。Byer团队通过测量简并光学参量振荡器中的震荡阈值以上的相位,展示了一种基于自发参量下变频随机性的全光量子RNGs新技术,由这种光学系统产生的随机量子比特达到了99%的保真度,并且具有极快的运算潜力。

2024-11-07 11:39:56 768

原创 量子前沿英雄谱|光量子计算的“技术前锋”:Alireza Marandi

这段时光对Marandi的研究生涯产生了重要影响。同年,凭借“对非线性光子学的贡献,特别其是在OPO计算和光学伊辛机演示以及中红外频率梳的半谐波生成方面的开创性工作”,Marandi获得了由激光物理与光子学学会(IUPAP)颁发的青年科学家奖(应用方面)。目前,Marandi教授的研究重点是非线性光子学的基础技术发展,通过探索超快光学、光学频率梳、量子光学、光学信息处理、中红外光子学和激光光谱学的前沿,并带领实验室团队致力于开发从传感到非经典计算和信息处理等应用的新型非线性光子器件和系统,推进理论的发展。

2024-11-06 10:33:35 859

原创 量子前沿英雄谱|经典计算的“灭霸”:John Preskill

通常,我们认为量子纠错的方式是,通过编码嘈杂的量子比特以保护存储在量子态中的信息。最终,以斯蒂芬·霍金“赠书服输”而结束。2018年,Preskill提出,现在是科技史上的一个特殊时期,拥有50-100个量子比特的量子计算机将能够执行超过当今经典计算机能力的任务,尽管量子噪声将限制可以可靠执行量子比特的大小【4】。Preskill认为,我们正在见证NISQ时代的开启:嘈杂的中型量子计算正在通过混合量子算法以解决经典和量子优化等问题,NISQ设备将是探索多体量子物理的有用工具,并将展现出其它有价值的应用。

2024-11-04 10:56:33 788

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除