证据理论(3)—— 计算两个证据体的距离

  计算两个证据体的距离的主要思想是:定义一个由幂集 2 Ω 2^\Omega 2Ω 中的元素作为基底的向量空间 S 2 Ω S_{2^\Omega} S2Ω,一个证据源的基本概率分配函数 (bpa) 就是该证据源在 S 2 Ω S_{2^\Omega} S2Ω 上的向量,然后在此基础上定义和计算距离。

证据体 (Body of evidence, BOE)

  证据体是所有焦元和它对应的 bpa 所构成的集合,表示如下: ( B , m ) = { [ A , m ( A ) ] ∣ A ∈ 2 Ω    a n d    m ( A ) > 0 } (B,m)=\{[A,m(A)]|A\in2^\Omega \; and\;m(A)>0\} (B,m)={[A,m(A)]A2Ωandm(A)>0} 例如: ( B , m ) = { [ { A , B } , 0.8 ] , [ Ω , 0.2 ] } (B,m)=\{[\{A,B\},0.8],[\Omega,0.2]\} (B,m)={[{A,B},0.8],[Ω,0.2]}

度量空间 (Metric spaces)

  定义了距离的向量空间称为度量空间。向量空间 S S S 上距离的定义如下: d : S × S → R ( A , B ) ↦ d ( A , B ) \begin{aligned} d:&S\times S\rightarrow R \\ &(A,B) \mapsto d(A,B) \\ \end{aligned} d:S×SR(A,B)d(A,B) 距离 d d d 满足以下条件 ( ∀ A , B ∈ S \forall A,B\in S A,BS):

  1. 非负性: d ( A , B ) ≥ 0 d(A,B)\geq0 d(A,B)0,当且仅当 A = B A=B A=B 时,有 d ( A , B ) = 0 d(A,B)=0 d(A,B)=0
  2. 反身性: d ( A , B ) = d ( B , A ) d(A,B)=d(B,A) d(A,B)=d(B,A)
  3. 三角不等式: d ( A , B ) ≤ d ( A , C ) + d ( C , B ) , ∀ C ∈ S d(A,B)\leq d(A,C)+d(C,B),\quad \forall C\in S d(A,B)d(A,C)+d(C,B),CS

两个证据体的距离

  两个证据体的距离的计算公式如下: d ( m 1 , m 2 ) = ( m 1 ⃗ − m 2 ⃗ ) T D ‾ ‾ ( m 1 ⃗ − m 2 ⃗ ) d(m_1,m_2)=(\vec{m_1}-\vec{m_2})^T\underline{\underline{D}}(\vec{m_1}-\vec{m_2}) d(m1,m2)=(m1 m2 )TD(m1 m2 ) 实际使用如下公式: d B P A ( m 1 , m 2 ) = 1 2 ( m 1 ⃗ − m 2 ⃗ ) T D ‾ ‾ ( m 1 ⃗ − m 2 ⃗ ) d_{BPA}(m_1,m_2)=\sqrt{\frac{1}{2}(\vec{m_1}-\vec{m_2})^T\underline{\underline{D}}(\vec{m_1}-\vec{m_2})} dBPA(m1,m2)=21(m1 m2 )TD(m1 m2 ) m 1 ⃗ , m 2 ⃗ \vec{m_1},\vec{m_2} m1 ,m2 表示两个证据源的 bpa 构成的向量, D ‾ ‾ \underline{\underline{D}} D 是一个 2 N × 2 N 2^N\times2^N 2N×2N 矩阵, D ‾ ‾ \underline{\underline{D}} D的行指标对应证据源1,列指标对应证据源2, D ‾ ‾ \underline{\underline{D}} D 中的每一个元素为: D ‾ ‾ ( A , B ) = ∣ A ∩ B ∣ ∣ A ∪ B ∣ \underline{\underline{D}}(A,B)=\frac{|A\cap B|}{|A\cup B|} D(A,B)=ABAB ∣ A ∣ |A| A 表示集合 A A A 的基数,即集合 A A A 中元素的个数。

Example

示例引自参考文献[2]的附录。
Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.3 , m 1 ( { A , B } ) = 0.4 , m 1 ( Ω ) = 0.3 m 2 : m 2 ( { B } ) = 0.2 , m 2 ( { C } ) = 0.3 , m 2 ( Ω ) = 0.5 \begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.3,& m_1(\{A,B\})=0.4,\quad & m_1(\Omega)=0.3 \\ &m_2:m_2(\{B\})=0.2,& m_2(\{C\})=0.3, \quad & m_2(\Omega)=0.5 \\ \end{aligned} Ω={A,B,C}m1:m1({A})=0.3,m2:m2({B})=0.2,m1({A,B})=0.4,m2({C})=0.3,m1(Ω)=0.3m2(Ω)=0.5
证据源1的 BOE 为: ( B 1 , m 1 ) = { [ { A } , 0.3 ] , [ { A , B } , 0.4 ] , [ Ω , 0.3 ] } (B_1,m_1)=\{[\{A\},0.3],[\{A,B\},0.4],[\Omega,0.3]\} (B1,m1)={[{A},0.3],[{A,B},0.4],[Ω,0.3]}
证据源2的 BOE 为: ( B 2 , m 2 ) = { [ { B } , 0.2 ] , [ { C } , 0.3 ] , [ Ω , 0.5 ] } (B_2,m_2)=\{[\{B\},0.2],[\{C\},0.3],[\Omega,0.5]\} (B2,m2)={[{B},0.2],[{C},0.3],[Ω,0.5]}
为了减少计算量,可以将两个 BOE 中的集合元素取一个并集,得到新的集合(可以视为一个新的幂集)表示如下: 2 Ω 1 ∪ 2 = { { A } , { B } , { C } , { A , B } , Ω } 2^{\Omega_{1\cup2}}=\{\{A\},\{B\},\{C\},\{A,B\},\Omega\} 2Ω12={{A},{B},{C},{A,B},Ω} m 1 , m 2 m_1,m_2 m1,m2 2 Ω 1 ∪ 2 2^{\Omega_{1\cup2}} 2Ω12 中集合出现的顺序表示成向量的形式: m 1 ⃗ = [ 0.3 0 0 0.4 0.3 ] m 2 ⃗ = [ 0 0.2 0.3 0 0.5 ] \vec{m_1}=\begin{bmatrix} 0.3\\ 0 \\ 0 \\ 0.4 \\ 0.3 \end{bmatrix} \quad \vec{m_2}=\begin{bmatrix} 0\\ 0.2 \\ 0.3 \\ 0 \\ 0.5 \end{bmatrix} m1 =0.3000.40.3m2 =00.20.300.5 矩阵 D ‾ ‾ \underline{\underline{D}} D 表示为: D ‾ ‾ = [ 1 0 0 1 2 1 3 0 1 0 1 2 1 3 0 0 1 0 1 3 1 2 1 2 0 1 2 3 1 3 1 3 1 3 2 3 1 ] \underline{\underline{D}}=\begin{bmatrix} 1&0&0&\frac{1}{2}&\frac{1}{3} \\ 0&1&0&\frac{1}{2}&\frac{1}{3} \\ 0&0&1&0&\frac{1}{3} \\ \frac{1}{2}&\frac{1}{2}&0&1&\frac{2}{3} \\ \frac{1}{3}&\frac{1}{3}&\frac{1}{3}&\frac{2}{3}&1 \\ \end{bmatrix} D=1002131010213100103121210132313131321 m 1 ⃗ − m 2 ⃗ = [ 0.3 − 0.2 − 0.3 0.4 − 0.2 ] \vec{m_1}-\vec{m_2}=\begin{bmatrix}0.3 \\ -0.2 \\ -0.3 \\ 0.4 \\ -0.2 \end{bmatrix} m1 m2 =0.30.20.30.40.2 d B P A ( m 1 , m 2 ) = 1 2 [ 0.3 − 0.2 − 0.3 0.4 − 0.2 ] [ 1 0 0 1 2 1 3 0 1 0 1 2 1 3 0 0 1 0 1 3 1 2 1 2 0 1 2 3 1 3 1 3 1 3 2 3 1 ] [ 0.3 − 0.2 − 0.3 0.4 − 0.2 ] = 0.4359 \begin{aligned} d_{BPA}(m_1,m_2)&=\sqrt{\frac{1}{2}\begin{bmatrix}0.3 & -0.2 &-0.3 &0.4 &-0.2 \end{bmatrix}\begin{bmatrix} 1&0&0&\frac{1}{2}&\frac{1}{3} \\ 0&1&0&\frac{1}{2}&\frac{1}{3} \\ 0&0&1&0&\frac{1}{3} \\ \frac{1}{2}&\frac{1}{2}&0&1&\frac{2}{3} \\ \frac{1}{3}&\frac{1}{3}&\frac{1}{3}&\frac{2}{3}&1 \\ \end{bmatrix}\begin{bmatrix}0.3 \\ -0.2 \\ -0.3 \\ 0.4 \\ -0.2 \end{bmatrix}} \\ &=0.4359 \end{aligned} dBPA(m1,m2)=21[0.30.20.30.40.2]10021310102131001031212101323131313210.30.20.30.40.2 =0.4359

参考文献

[1] Jousselme A L , Grenier D , éloi Bossé. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2):91-101.
[2] Beynon M J . The Role of the DS/AHP in Identifying Inter-Group Alliances and Majority Rule Within Group Decision Making[J]. Group Decision & Negotiation, 2006, 15(1):21-42.
  • 14
    点赞
  • 43
    收藏
    觉得还不错? 一键收藏
  • 9
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值