Jacobi迭代法求解线性方程组

Jacobi迭代法

  求解线性方程组 A x = b \boldsymbol{Ax}=\boldsymbol{b} Ax=b,其中 A \boldsymbol{A} A n × n n\times n n×n维可逆系数矩阵, b \boldsymbol{b} b n n n维列向量。
  将系数矩阵 A \boldsymbol{A} A分裂为 A = D + L + U , \boldsymbol{A}=\boldsymbol{D}+\boldsymbol{L}+\boldsymbol{U}, A=D+L+U 其中, D = diag ( a 11 , a 22 , ⋯   , a n n ) , \boldsymbol{D}=\text {diag}(a_{11},a_{22},\cdots,a_{nn}), D=diag(a11,a22,,ann) L = [ 0 0 0 ⋯ 0 a 21 0 0 ⋯ 0 a 31 a 32 0 ⋯ 0 ⋮ ⋮ ⋱ ⋱ ⋮ a n 1 a n 2 ⋯ a n , n − 1 0 ] , U = [ 0 a 12 a 13 ⋯ a 1 n 0 0 a 23 ⋯ a 2 n ⋮ ⋮ ⋱ ⋱ ⋮ 0 0 ⋯ 0 a n − 1 , n 0 0 ⋯ 0 0 ] 。 \boldsymbol{L}= \begin{bmatrix} 0&0&0&\cdots&0 \\ a_{21}&0&0&\cdots&0 \\ a_{31}&a_{32}&0&\cdots&0\\ \vdots&\vdots&\ddots&\ddots&\vdots \\ a_{n1}&a_{n2}&\cdots&a_{n,n-1}&0 \end{bmatrix}, \boldsymbol{U}= \begin{bmatrix} 0&a_{12}&a_{13}&\cdots&a_{1n}\\ 0&0&a_{23}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\ddots&\vdots \\ 0&0&\cdots&0&a_{n-1,n}\\ 0&0&\cdots&0&0 \end{bmatrix}。 L= 0a21a31an100a32an2000an,n10000 U= 0000a12000a13a2300a1na2nan1,n0 Jacobi迭代法的矩阵表示为 x ( k + 1 ) = − D − 1 ( L + U ) x ( k ) + D − 1 b , \boldsymbol{x}^{(k+1)}=-\boldsymbol{D}^{-1}(\boldsymbol{L+U})\boldsymbol{x}^{(k)}+\boldsymbol{D}^{-1}\boldsymbol{b}, x(k+1)=D1(L+U)x(k)+D1b其中, − D − 1 ( L + U ) -\boldsymbol{D}^{-1}(\boldsymbol{L+U}) D1(L+U)被称为迭代矩阵。上述矩阵表示可以展开成分量形式 x i ( k + 1 ) = 1 a i i ( b i − ∑ j ≠ i a i j x j ( k ) ) 。 x_i^{(k+1)}=\frac{1}{a_{ii}} (b_i - \sum_{j\neq i}{a_{ij}x_j^{(k)}})。 xi(k+1)=aii1(bij=iaijxj(k))   定理1:迭代法对任意初始向量 x ( 0 ) \boldsymbol{x}^{(0)} x(0)都收敛的充分必要条件是迭代矩阵的谱半径小于1。
  定理2:若 A \boldsymbol{A} A为严格对角占优,或不可约对角占优矩阵,则Jacobi迭代法收敛。

C语言实现Jacobi迭代法

void jacobi(const Matrix *A, const Matrix *b, Matrix *x, const int it)
{
	double tmp = 0;
	int r = 0, c = 0;
	double *x_tmp = (double *)malloc(sizeof(double) * x->row);
	for (int k = 0; k < it; k++)
	{
		for (r = 0; r < A->row; r++)
		{
			tmp = 0;
			for (c = 0; c < A->column; c++)
			{
				if (c != r)
					tmp += A->data[r * (A->column) + c] * x->data[c];
			}
			x_tmp[r] = (b->data[r] - tmp) / (A->data[r * (A->column) + r]);
		}
		memcpy(x->data, x_tmp, sizeof(double) * x->row);
	}
	free(x_tmp);
}
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值