最大公约数
int gcd (int a, int b) {
return b ? gcd (b,a % b) : a;
}
最小公倍数
int lcm(int a,int b){
return a/gcd(a,b)*b;//先做除法,防止数太大超范围
}
求ax+by=c的一个解
int exgcd (int a, int b, int &x, int &y) {
if (!b) {
x = 1, y = 0;
return a;//gcd(a,b),两数的最大公约数
}
else {
int d = exgcd(b,a%b, y, x);
y -= a/b*x;
return d;
}
}//求的是ax+by=gcd(a,b)
/*
只有c%gcd(a,b)==0时才有解
一个解为x*=c/gcd;y*=c/gcd
通解 x=x+b/gcd*n,y=y-a/gcd*n n是一个整数
最小正整数解x=(x%b/gcd+b/gcd)%(b/gcd) y=(c-a*x)/b
*/
快速幂
int qpow(ll a, ll b, ll mod) {
ll ans = 1;
while (b) {
if(b&1) ans=(ans*a)%mod;
a=(a*a)%mod;//小心a*a会不会超范围
b>>=1;
}
return a;
}
龟速乘
long long qmul(long long a, long long b, long long m) {
long long ans = 0, k = a, f = 1;//f用于取负数
if (k < 0) f = -1, k = -k;
if (b < 0) f *= -1, b = -b;
while (b) {
if (b & 1) ans = (ans + k) % m;
k = (k << 1) % m;
b >>= 1;
}
return ans * f;
}
求乘法逆元
int mod_inverse (int a, int m) {
int x, y;
if (exgcd (a, m, x ,y) == 1)//ax + my = 1
return (x % m + m) % m;
return -1;//不存在
}