isce2 学习(二) linux 系统安装 isce2

linux 系统安装isce2

由于isce2部分模块采用了linux系统调用,纯windows环境目前并不支持,所以后面将在linux系统中部署isce2环境

一、安装anaconda3

参考:教程

1.检索最新版本的Anaconda

从Web 浏览器中,转到Anaconda分发页面,可以从以下链接访问:

https://www.anaconda.com/distribution/

查找最新的Linux版本,并将链接复制到安装程序bash脚本。

2.下载Anaconda Bash 脚本

以sudo非root用户身份登录到Ubuntu18.04 服务器,进入目录并下载您从Anaconda网站复制的链接:/tmp curl

cd /tmp
curl -O https://repo.anaconda.com/archive/Anaconda3-2021.05-Linux-x86_64.sh

3.验证数据完整性

sha256sum Anaconda3-2021.05-Linux-x86_64.sh

输出38ce717758b95b3bd0b1797cc6ccfb76f29a90c25bdfa50ee45f11e583edfdbf Anaconda3-2021.05-Linux-x86_64.sh

4.运行Anaconda 脚本

bash Anaconda3-2021.05-Linux-x86_64.sh

您将收到以下输出,用于通过按直到末尾来查看许可协议。enter

在这里插入图片描述

当您到达许可证末尾时,键入然后按,只要同意许可证即可完成安装。 yes enter

同意许可证后,系统提示您选择安装位置。您可以按接受默认位置,也可以指定其他位置。enter

在这里插入图片描述

确认或更改安装位置

/home/serena/anaconda3
  1. 选择选项

安装完成后,您将收到以下输出:

在这里插入图片描述

​ 建议您键入以使用该命令。 yes conda

5.激活安装

现在,您可以使用以下命令激活安装:

source ~/.bashrc

6.测试安装

使用以下命令测试安装和激活:conda

conda list

二、在anaconda3中创建python3环境

  1. 设置Anaconda 环境

    您可以使用该命令创建Anaconda环境。例如,可以使用以下命令创建名为python 3 的环境:conda create my_env

conda create --name my_env python=3

​ 激活新环境,如下所示:

conda activate my_env

​ 您的命令提示符前缀将更改,以反映您处于活动的 Anaconda 环境中,并且您现在已准备好开始处理项目。

三、isce2安装

1、创建isce专用环境

conda create --name isce2_env python=3.8

2、激活创建的环境

conda activate isce2_env

3.加入 .bashrc

#activate conda
export ANACONDA=/home/haohai/anaconda3
source activate isce2_env

4.给anaconda3权限 ,否则非root用户无法写入环境

chmod 777 -R '/home/haohai/anaconda3'

5.添加conda-forge下载频道并安装isce2(如果没做上步,这步先进入root模式)

conda config --add channels conda-forge
conda install isce2

此处运行conda install isce2 下载较慢,使用github文档查看

5.1 准备一个conda 或conda 虚拟环境
conda create -n isce2 python=3.8
conda activate isce2

以下步骤将安装isce2 在$CONDA_PREFIX。

   echo $CONDA_PREFIX 
5.2 安装所需的软件包
conda install -c conda-forge git cmake cython gdal h5py libgdal pytest numpy fftw scipy basemap opencv pybind11 shapely

要编译/安装mdx ,您还需要

   conda install -c conda-forge openmotif openmotif-dev xorg-libx11 xorg-libxt xorg-libxmu xorg-libxft libiconv xorg-libxrender xorg-libxau xorg-libxdmcp 

对于 GPU 支持,您将需要一个 CUDA 编译器,该编译器通常位于 或可由 加载。对于 PyCuAmpcor,建议使用 GDAL>=3.1,以便使用内存映射来加快文件 I/O。/usr/local/cuda``module load cuda

您还需要 C/C++/Fortran 编译器。您可以使用提供的系统GNU编译器,也可以使用conda附带的编译器,

   conda install gcc_linux-64 gxx_linux-64 gfortran_linux-64

请注意,给定版本的 CUDA 仅支持某些版本的 GNU 编译器。例如,CUDA 10.1,请使用 GNU<=7.3。

  conda install gcc_linux-64=7.3.0 gxx_linux-64=7.3.0 gfortran_linux-64=7.3.0

**注意:对于 Kamb(使用 Redhat 7):**使用 GNU GCC 4.8.5 系统。不要使用 CONDA 安装的 GNU 编译器。

5.3 下载源码包
mkdir -p $HOME/tools/src
cd $HOME/tools/src
git clone https://github.com/isce-framework/isce2.git
5.4 编译并安装 isce2
cd $HOME/tools/src/isce2
mkdir build  && cd build
cmake .. -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX -DPYTHON_MODULE_DIR=lib/python3.8/site-packages -DCMAKE_CUDA_FLAGS="-arch=sm_60" -DCMAKE_PREFIX_PATH=${CONDA_PREFIX} -DCMAKE_BUILD_TYPE=Release 
make -j 16 # to use multiple threads
make install 
  • DCMAKE_INSTALL_PREFIX是要安装包的位置。在这里,我们选择直接安装到 conda venv ($CONDA_PREFIX),以便像其他 conda 包一样自动设置 isce2 命令/脚本的路径。
  • DPYTHON_MODULE_DIR是用于安装 python 脚本的目录,相对于该目录进行定义。请检查您的 conda venv python3 版本,并相应地进行设置,例如 python3.7 而不是 python3.8。检查 python 版本的站点包目录的一种方法是运行命令DCMAKE_INSTALL_PREFIX
python3 -c 'import site; print(site.getsitepackages())'
  • DCMAKE_CUDA_FLAGS针对特定 GPU 架构优化 GPU 代码,例如,P100 的sm_60、K40 的sm_35、V100 sm_70。

  • DCMAKE_PREFIX_PATH用于依赖项的搜索路径,例如 gdal、fftw。由于我们通过 conda 安装了所有依赖项,因此我们使用 ${CONDA_PREFIX}。

  • DCMAKE_BUILD_TYPE=(None, Debug, Release).某些 isce2 模块(例如 PyCuAmpcor)具有调试功能,这些功能由 -DNDEBUG 编译标志打开/关闭。此标志未包含在调试生成类型中或未指定,即调试功能处于打开状态。它包含在"发布"生成类型中,因此调试功能处于关闭状态。对于最终用户,请使用发布生成类型。

  • 如果 cmake 无法正确找到所需的编译器,则可以通过添加

    -DCMAKE_C_COMPILER=/path/to/gcc -DCMAKE_CXX_COMPILER=/path/to/g++ -DCMAKE_Fortran_COMPILER=/path/to/gfortran
    

    上面代码显示地址目录不存在

  • 如果编译中出现问题,您想检查详细信息

    make VERBOSE=1
    
    5.5检查和测试

    您可以通过以下方式检查 ISCE2 是否已正确安装

  cd $CONDA_PREFIX/bin
  ls -ltr 
  # you should see mdx, and other python apps are installed 
  cd ../lib/python3.x/site-packages
  ls -ltr
  # you should see isce2 and an additional link isce

您可以尝试运行

  python3 -c 'import isce'
  topsApp.py -h 
  ... 

下次,加载 isce2 需要做的就是

  codna activate # if you install to the base 
  conda activate isce2 # if you install to an isce2 venv. 

默认情况下,CUDA 模块在 GPU 设备 0 上运行(目前每个任务仅支持一个 GPU)。如果有多个任务或多个用户共享同一设备,程序将运行缓慢甚至崩溃。如果您安装了多个 GPU(运行以检查),则可以通过使用选择设备将任务分散到不同的 GPU,其中最多安装了 GPU 的数量。例如,要使用设备 2,nvidia-smi``CUDA_VISIBLE_DEVICES=n``n=0,1,...

  export CUDA_VISIABLE_DEVICES=2
  topsApp.py ...
  # or one line
  CUDA_VISIBLE_DEVICES=2 topsApp.py ...

四、利用conda命令导出/安装当前环境所有的依赖包及其对应的版本号

conda list
conda list -e > requirements.txt              #导出当前环境所有依赖包及其对应的版本好
conda install --yes --file requirements.txt   # 在新的环境中安装导出的包
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

全糖去冰_q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值