5-10 圆排列问题(回溯)

5-10 圆排列问题(回溯)

给定n个大小不等的圆c1, c2,…, cn,现要将这n个圆排进一个矩形框中,且要求各圆与矩形框的底边相切。圆排列问题要求从n个圆的所有排列中找出有最小长度的圆排列。
例如,当n=3,且所给的3个圆的半径分别为1,1,2时,这3个圆的最小长度的圆排列如图所示。其最小长度为2+4√2
在这里插入图片描述

二、分析

在这里插入图片描述
求左右边界
左边界:所有圆的X坐标减去半径得到的 最小值
右边界:所有圆的X坐标加上半径得到的 最大值
求圆心坐标时,假定它跟前面的所有圆相切,求出圆心坐标,值最大的就是真的

在这里插入图片描述

三、代码

//5-10 圆排列问题
//排列树
//给n个圆和n个圆的半径 
#include<iostream>
#include<string.h> 
#include<cmath>
#include<algorithm> 
#define INF 0x3f3f3f3f
using namespace std; 
int n;//圆的个数 
float x[100];//当前圆排列圆心坐标 
float r[100];//当前圆排列 
float minn = INF;//当前最优值
void Print(float b[100]){
	for(int i=1;i<=n;i++)
		cout<<b[i]<<" ";
	cout<<endl;
}
float Center(int t){//求圆心坐标:假定它跟前面的所有圆相切,求出圆心坐标,值最大的就是真的
	float ans=0;
	for(int i=1;i<t;i++){
		float v=x[i]+2.0*sqrt(r[t]*r[i]);//2.0*sqrt(a*b)=sqrt(pow(a+b,2),pow(a-b,2))
		if(v>ans) ans=v;
	}
	return ans;
} 
void Compute(){
	float low=INF;//左边界:所有圆的X坐标减去半径得到的 最小值
	float high=0;//右边界:所有圆的X坐标加上半径得到的 最大值
	for(int i=1;i<=n;i++){
		float w=x[i]-r[i];//先计算左边界
		if(w<low) low=w;
		float v=x[i]+r[i];//在计算右边界
		if(v>high) high=v;
	} 
	cout<<"high-low="<<high-low<<endl;
	if(high-low<minn) minn=high-low;//边长为右边界减左边界 
	
}
void Swap(float &a,float &b){
	float t=a;a=b;b=t;
}
//排列树
void BackTrack(int t){ //第t个顶点 
	if(t>n){//到达叶结点
		Compute();
		Print(r);
		return;
	}
	else{
		for(int i=t;i<=n;i++){//从剩下的圆选一个放在t位置 
		Swap(r[t],r[i]);
		float centerx=Center(t);//求t的圆心坐标	
		if(centerx+r[t]+r[1]<minn){
			x[t]=centerx;
			BackTrack(t+1);		
			}
			Swap(x[t],x[i]);
		}	
	}	
} 
int main(){
	int t;//边数 
	int x,y,z;
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>r[i];
	}
	cout<<"--------------\n"; 
	BackTrack(1); 
	cout<<"minn="<<minn<<endl;
	return 0;
}
/*
3
1 1 2
*/

在这里插入图片描述

四、改进

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清木!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值