摘要
为探明不同核函数高斯过程回归算法在不同使用条件下对参考作物腾发量( ET0 )模拟精度,在长江流域内选择10个代表性气象站点,以 PM 公式的计算结果作为参考值,以最高气温、最低气温、平均气温、相对湿度、平均本站大气压、日照时数和风速作为主要气象因子,使用灰色关联分析得到因子输入组合,使用二次有理、平方指数、Matern 5 /2 等 3 种不同核函数的高斯过程回归算法对 ET0 进行模拟,并与 Priestley-Taylor、Hargreaves-Samani、Irmak-Allen 等 3 种经典算法计算结果进行对比。
结果显示:
①在同一站点同一参考公式计算结果下,3 种不同核函数高斯过程回归算法和 3 种经典算法的模拟精度大小排序为: Matern 5 /2>二次有理>平方指数>PT>IA>HS,其中 Matern 5 /2 的模拟效果最好,其 R2 范围为 0. 970~ 0. 988。表明在相同气象参数输入条件下,机器学习模型精度普遍优于经验模型。
②针对灰色关联分析得到的结果,日最高温度对参考作物腾发量影响较大,其平均关联度为 0.8969; 日照时数对参考作物腾发量影响较小,其平均关联度为 0.810 5; 其余气象因子对参考作物腾发量的影响适中。
③针对不同因子组合输入下同种核函数的高斯过程回归算法,3 种不同核函数高斯过程回归算法的模拟 ET0 表现效果均为: 六因子>五因子>四因子,其中六因子输入的模拟效果最好,其 R2 范围为 0.908~0.977。
关键词
参考作物腾发量; 灰色关联分析; 高斯过程回归; 核函数
0 引言
本文以长江流域10个站点 1970-2019共 50 年的逐日气象数据为研究对象,以 PM 公式计算的 ET0 为参考值,对比不同因子输入组合情况下,采用 PT 公式、HS 公式、TH 公式和 3 种不同核函数的 GPR 算法为计算方法,计算逐日参考作物腾发量的精度。
本研究目的:
①对比全气象因子输入情况下,3 种 ET0 经验公式与3种不同核函数的GPR算法计算参考作物腾发量的计算精度。
②对比不同因子输入情况下,3 种不同核函数GPR算法的计算精度,并尝试分析因子输入改变情况下计算精度改变的原因。
1 材料与方法
1.1 数据资料
本研究所使用的气象资料由国家气象科学中心( http: / /www.nmic.cn /) 提供。
收集了长江流域 10 个常规气象站近 50 年( 1970-2019) 的逐日气象数据,主要包括最低气温( Tmin,℃ ) 、最高气温( Tmax,℃ ) 、平均气温( Tmean,℃ ) 、相对湿度( RH,%) 、平均本站气压( P,kPa) 、日照时数( N,h) 、风速( U2,m /s) 共 8 项指标。
1.2 参考作物腾发量( ET0 ) 计算方法
1.2.1 FAO-56 Penman-Monteith 模型
式中: Rn 为到达地表的净辐射,MJ/( m2 · d) ;
Tmean 为日平均气温,℃;
G 为土壤热通量,MJ/( m2·d) ;
γ 为干湿计常数,kPa /℃ ;
es、ea 分别为饱和水汽压与实际水汽压,kPa;
Δ 为饱和水汽压与温度曲线的斜率,kPa /℃ ;
U2 为距离地面 2m 处的日平均风速,m /s。
1.2.2 Hargreaves-Samani 模型
HS 公式是一种基于温度来估算 ET0 的方法,由于需要的气象数据较少,常用于气象设备缺乏地区的 ET0 预报。其表达式为:
式中: Ra 为大气辐射,MJ/( m2 ·d) ;
C、E、T 为Hargreaves 公式的3个参数,建议值分别为0.0023、0.5 和 17.8。
1.2.3 Priestley-Taylor 模型
Priestley-Taylor( P -T) 公式法是在假定周围湿润的条件下提出来的,因此该方法一般适用于在湿润地区计算参考作物腾发量。其公式如下:
式中: α 系数主要考虑空气动力因素影响,一般情
况下取 1. 26; λ= 2. 501-0. 002361T 或直接取 2. 45。
1.2.4 Irmak-Allen 模型
3种核函数
本文研究中运用的 3 种核函数如下:
1) 二次有理核函数。公式为:
2) 平方指数协方差函数( SE) 。公式为:
3) Matern 协方差函数( Matern 5/2) 。公式为:
式中: Kv 为修正贝塞尔函数。
1.3.2 评价方法
MAE、RMSE、R2
2 结果与分析
2.1 基于灰色关联分析法分析不同气象因子对逐日蒸散发的影响程度
灰色关联分析法是一种根据因素之间发展趋势的相似或者相异程度,即“灰色关联度”,作为用来衡量因素间的关联程度的一种方法。
对 ET0 影响程度排序为: 日最高气温>平均气温>日最低气温>平均本站气压>平均风速>相对湿度>日照时数,将关联度数据进行可视化,见图1。
2.2 基于同一参考公式全因子输入下的3种经典算法和3种不同核函数高斯过程回归算法预测精度对比
本研究首先通过 PM 公式、HS 公式、Priestley-Taylor 公式和 Irmak-Allen 公式,计算出各站点逐日参考作物腾发量 ET0_PM、ET0_HS、ET0_PT、ET0_IA,再分别以前 40 年( 1970 - 2009 年) 逐日气象资料 ( Tmin、Tmax、Tmean、RH、P、N 和 U2 ) 和ET0 值( ET0_PM ) 为机器学习输入变量和输出训练集,并最终通过输入后10 年( 2010-2019) 逐日气象因子,模拟该时间序列上的 ET0 值,最后与对应的 ET0_PM 值进行对比分析,其具体结果见图 2。
从整体上分析可以得到,在以 PM 为参考公式情况下,6 种算法的模拟 ET0 表现效果均为: Matern 5 /2>二次有理>平方指数>PT>IA>HS,总体上 3 种不同核函数高斯过程回归算法的预测精度远优于 3 种经典算法。
2.3 基于同一参考公式不同因子输入下的3种不同核函数高斯过程回归算法预测精度对比
本研究首先通过PM 公式计算出各站点逐日参考作物腾发量ET0_PM,再根据 2.1 灰色关联分析结果,确定
四因子(Tmin、Tmax、Tmean 和 P)、五因子(Tmin、Tmax、Tmean、P 和 N)、六因子(Tmin、Tmax、Tmean、P、N 和 U2)3 种因子输入组合。
分别以前 40 年( 1970-2009 年) 逐日气象资料和ET0 值( ET0_PS ) 作为机器学习输入变量和输出训练集,最终通过输入后 10 年( 2010-2019) 逐日气象因子,模拟该时间序列上的 ET0 值,最后与对应 的 ET0,PM 值进行对比分析。具体结果见图 3。
从整体上分析可以得到,在以 PM 为参考公式的情况下,3 种不同核函数高斯过程回归算法的模拟 ET0 表现效果均为: 六因子>五因子>四因子。
3 讨论与分析
3.1 经典算法和机器学习算法适用性对比
3.2 结论
本文以长江流域 10 个气象站点 1970-2019年的日气象数据为基础,以 PM 公式计算的 ET0结果为参考值,研究了 3 种经典算法在计算 ET0方面和 3 种不同核函数高斯过程回归算法在预测 ET0 方面的表现。结论如下:
1) 利用灰色关联度分析得到,日最高温度对参考作物腾发量影响较大; 日照时数对参考作物腾发量影响较小; 其余气象因子对参考作物腾发量的影响适中。
2) 对于 3 种不同核函数高斯过程回归算法和 3 种经典算法来说,总体上,3 种不同核函数高斯过程回归算法和 3 种经典算法的预测精度大小关系表现为: Matern 5 /2>二次有理>平方指数>PT>IA>HS。
3) 对于不同因子输入下同种核函数的高斯过程回归算法,在以 PM 为参考公式的情况下,3种不同核函数高斯过程回归算法的模拟 ET0 表现效果均为: 六因子>五因子>四因子。