自动化控制工程系统优化研究 带matlab仿真

系统简介

自动控制是工程科学的一个分支。它对控制系统的自动影响,使得输出值接近我们想要的值。随着生产过程工
艺的发展及技术的进步,对自动控制系统的要求也越来越高。控制对象往往伴随大量的干扰,单独的前馈和反馈控
制具有其本身的局限性,控制系统有时很难获得良好的控制质量。因此,对前馈加反馈这样的复合控制系统既发挥
了前馈控制对特定校正及时的优点, 又保持了反馈控制能抑制闭合回路多个干扰的优势和对被控变量始终给予实时
检验的长处。可以保证被控变量的无差调节,为工程上实现简单的前馈补偿创造了条件。正由于前馈-反馈控制具有
上述特点,它在实际工程上有着十分广泛的应用。
  对前馈加反馈控制系统进行优化研究,掌握前馈补偿装置的设计方法就具有重要的研究意义。本次毕业设计即
是对前馈加反馈控制系统进行状态方程转化,求取离散差分方程编制MATLAB程序进行仿真进行优化设计研究。
关键词 前馈控制;反馈控制;状态空间模型;仿真曲线

第一章 绪论

1.1研究背景与意义
  自动控制是工程科学的一个分支。它涉及利用反馈原理的对动态系统的自动影响,以使得输出值接近我们想要
的值。从方法的角度看,它以数学的系统理论为基础。自动控制技术的研究可以将人类从复杂、危险、繁琐的劳动
环境中解放出来并大大提高控制效率。反馈控制对无论什么干扰引起被控量的变化都可以根据偏差量进行调节控
制。但反馈存在作用不及时的缺点,总存在滞后性。与之相反,前馈却能及时作用,根据被控系统或对象的特性来
确定“专用”的控制器。前馈是快速的、敏感的,但是不准确。将前馈与反馈结合,构成前馈-反馈控制系统,这样
既保持了反馈能克服多个扰动和具有对被控参数进行反馈控制的长处,又发挥了前馈控制及时的优点。
  随着生产过程工艺的发展及技术的进步,对自动控制系统的要求也越来越高。工业控制对象往往伴随大量的干
扰,采用常规的反馈控制系统有时很难获得良好的控制质量,为了适应控制系统中存在的这些干扰,在控制理论中
提出了补偿控制的基本概念。单纯的前馈控制是一种开环控制,只能对指定的扰动,进行补偿控制,且控制系统存
在偏差,这就给前馈控制的广泛应用带来了障碍。而反馈控制系统调节的依据是控制的偏差,它无法将干扰克服在

被控变量偏离设定值之前,干扰进入系统后,被控变量产生的波动需经过一段时间才能表现出来,这就限制了反馈
控制器作用的充分发挥。因此,在工程上往往将前馈与反馈结合起来应用,构成前馈-反馈控制系统,这样既能发挥
前馈控制作用及时的优点,又保持了反馈控制能克服多种扰动以及对被控量进行检验的长处,是一种适合过程控制
的好方法。因此,对前馈加反馈这样的复合控制系统进行优化研究,掌握前馈补偿装置的设计方法就具有重要的研
究意义。
1.2国内外研究现状
  复合控制系统中由于前馈补偿控制的存在,其对主要干扰有更快的抑制速度,且由于反馈控制的存在, 又可以保
证被控变量的无差调节,因此,复合控制系统尤其适用于控制系统中存在强扰动或者对控制系统的稳态精度和动态
品质要求比较高,单纯闭环反馈控制难以满足要求的时候。正是由于前馈加反馈控制系统的上述特点,在工程控制
中有着极为广泛的应用。
  例如武继龙,尚英锋为了证明前馈反馈控制在保持带扰动系统稳定性的可行性,设计了同时带有前馈控制和反馈
控制的控制策略,使系统保持稳定。并证明了系统的稳定性。
  潘伟程提出了一种基于前馈-反馈控制的斯泰尔摩风冷优化系统。该系统可以根据环境温度的不同以及线材实时
冷却速度的变化,自动修正系统模型参数,使得线材的实际冷却速度与标准的冷却速度更加接近,这种控制系统的
应用大大提高了线材的质量水平和稳定性。
  徐丹,胡兵提出了对汽车前轮转向控制采用预设传动比、后轮采用前轮转角比例前馈加横摆角速度比例反馈的控
制策略对转向系统进行控制,通过函数关系并利用Simulink软件构建仿真模型,其仿真结果表明:该控制策略能够
很好地实现控制目标,使稳态侧偏角为零,并使得反应时间和转向能力都有所提高为汽车的转向控制提供了有益借
鉴和思考。
  现阶段,换热器的温度控制不仅存在很大的滞后性,而且还存在很多扰动因素。以不考虑扰动因素的PID控制为
基础,分析构成存在扰动因素时的前馈-反馈系统。该系统不仅有效消除了温度控制存在的纯滞后问题,而且使扰动
因素对系统稳定性的影响降到最小,得到较好的控制性能。
  Esam H. Abdelhameed对PTP伺服系统高精度运动的自适应控制器设计进行了研究。建议的适应方法依赖于最佳
状态反馈技术来适应主控制器的工作。拟建的自适应控制器已针对PTP伺服执行器的动态问题进行了测试。已对使用
建议的自适应控制器的定位性能与使用 PID 获得的定位性能进行了比较。模拟结果确认了拟议的自适应控制器的有
效性,获得高精度运动的简单性、有效性和针对动态问题的稳健性被认为是拟议控制策略的主要优点。
  Qiang Li,Yi-ming Fang,Jian-xiong Li,Wen-jian Zhang针对伺服电机驱动的连铸结晶器振动位移系统要求电
机按一定的固定方向转动的实际情况,提出了前馈与反馈控制相结合的复合控制方案。通过典型工业模具振动系统
的伺服驱动,验证了所提控制方案的有效性。
1.3课题内容
  前馈加反馈控制系统又称为复合控制系统,前馈与反馈的结合可以弥补各自存在的不足,既发挥了前馈控制对
特定校正及时的优点,又保持了反馈控制能抑制闭合回路多个干扰的优势和对被控变量始终给予实时检验的长处,
使控制系统的控制水平有显著的提高,因而它在实际工程上获得了十分广泛的应用。本毕业设计就是对前馈反馈控
制系统进行研究的,在理解前馈控制和反馈控制的基本原理及补偿控制的基本概念的基础上,学习掌握按给定值扰
动补偿的复合控制策略和按外部扰动补偿的复合控制策略的控制原理,并进行给定补偿装置和扰动补偿装置设计,
随后根据系统传递函数以及方框图来转换状态方程,将系统离散化以后来求取离散系统的差分方程并以此来编制
Matlab程序并进行调试运行,对上述两种复合控制策略进行仿真研究,并与无补偿时的情况进行对比,以验证复合
控制策略的优越性。

第二章 自动控制系统

2.1自动控制的发展和应用
  从20世纪40年代起,由于工业的发展和军事技术上的需要,自动控制技术得到了迅速的发展和广泛的应用。如
今,自动控制技术不仅广泛应用于工业控制中,在军事、农业、航空、航海、核能利用等领域也发挥着重要的作
用。例如,电厂中锅炉的温度或压力能够自动维持恒定不变,机械加工中数控机床按预定程序自动地切削工件,核
电站的机器人检测核泄漏,军事上导弹能准确地击中目标,空间技术中人造卫星能按预定轨道运行并能准确地回收
等,都是应用了自动控制技术的结果。
   所谓自动控制,是指在没有人直接参与的情况下,利用控制装置对机器设备或生产过程进行控制,使之达到预
期的状态或性能要求。

自动控制的应用可以追溯到18世纪瓦特利用离心飞锤式调速器使 蒸汽机转速保持恒定的开创性突破,以及19
世纪麦克斯威尔对轮船摆动的研究。但在初期,自动控制应用的进展并不快。自动控制的飞速发展是在20世纪。例
如,1932 年奈奎斯特对控制系统稳定性的研究-奈氏判据,伯德于1940年在频域法中引入对数坐标,伊万思于1948
年提出根轨迹,维纳于1949年出版了划时代著作《控制论》,都对控制理论做了系统的阐述。他们的研究工作以及
前人的努力,奠定了经典控制理论的基础,到20世纪50年代趋于成熟。经典控制理论的特点是以传递函数为数学工
具,主要研究单输入—单输出的线性定常连续和离散系统的建模、分析与设计问题,对非线性系统的性能分析方法
也做了初步研究。落20世纪50年代末至60年代初期,由于空间技术发展的需要,对自动控制的精确性和经济指标提
出了严格的要求,计算机的迅速发展,又在客观上提供了必要的技术手段,从而使自动控制理论有了重大进展。如
庞特里亚金的极大值原理、贝尔曼的动态规划理论、卡尔曼的最优滤波理论等,这些都标志着控制理论发展到了现
代控制理论阶段。现代控制理论的特点是采用状态空间法,研究多输入—多输出、定常和时变、线性和非线性系统
进行分析与设计。
   20世纪70年代以来,随着技术革命和大规模复杂系统的发展,自动控制理论又向大系统理论和智能控制理论发
展。智能控制理论的研究是以人工智能的研究为方向,引导人们去探讨自然界更为深刻的运动机理。智能控制理论
的研究和发展,启发且促进了人们的思维方式,标志着信息与控制学科的发展远没有止境。
2.2自动控制系统的组成
  自动控制系统是指在没有人直接参与的情况下,利用外加的设备或装置,使机器、设备或生产过程的某个工作
状态或参数自动地按照预定的规律运行。被控制的机器、设备和生产过程称为被控系统(或被控对象)。
  自动控制是在人工控制的基础上发展起来的。以水箱水位控制系统为例,w为给水流量,控制的任务就是以一定
精度保持水箱水位h(t)为某一期望(给定)的数值h0。在人工控制中,人是通过眼、脑、手这三个器官来进行水位
控制的。首先用眼睛观测水箱水位的高低变化,然后用大脑分析比较实际水位是否偏离期望值,若偏离了,则经过
思考(运算)按操作经验,指挥手去执行这一命令,调节给水调节阀的开度,从而把水位控制在所期望的数值上。
  在自动控制中,水箱水位h(t) 经测量变送器(代替了 人的眼睛) 自动测量出来并按一定函数关系转换成(通
常为比例关系)统一信号,与水位给定值h0进行比较,二者之差送入控制器(相当于人的大脑)。控制器根据偏差
的正负及大小,发出一定规律的输出信号,指挥执行器(相当于人的手)去操作给水调节阀的开度,改变给水流量,
从而改变水箱水位。这样不停地进行测量、比较、产生控制量、执行,维持水位为希望值。
可见一个典型的自动控制系统通常由下列不同功能的基本部分组成。
  (1)被控对象(被控系统或控制对象)。被控对象为系统所要控制的设备或过程(过程是指被控系统的运行状
态)。它的输出是被控量,输入是控制量。
  (2)给定环节。产生给定输入信号(希望信号)的环节。按生产或管理要求,被控量必须维持在希望值。该值
也叫参考输入或设定值(给定值)。该环节一般含在控制环节中。
  (3)测量环节。将被控量检测出来并传送给控制环节。从信号处理的功能上讲,该环节的功能是把非电量或强
电量的物理量转化成弱电量,然后传送给与它相连的下一个环节。在控制系统中该环节也称为传感器或测量变送
器。
  在当今的计算机控制系统中,该环节还把刚得到的弱电量进一步转 换成数字量,然后再送给与它相连的计算
机。现在,通常称这种传感器为智能(数字)传感器。
  (4)比较环节。其功能是将给定的输入信号(被控量的希望值)与测量环节得到的被控量的实际值加以比较,得
到一个偏差量。该环节一般含在控制环节中。
  (5)控制环节。它的功能是根据偏差量,决策如何去操作控制量,使得被控量达到所希望的目标。这一环节是
自动控制系统实现有效控制的核心,因为要得到正确、有效、优秀的 控制决策并不是一件很容易的事情,它要依据
控制系统性能要求,遵循一定的控制规律,经过反复推导和设计才能完成。研究控制系统的主要任务就是如何设计
控制环节,使系统达到希望的要求。在控制系统中该环节也称为控制器。
  (6)执行环节。根据控制环节给出的控制决策,具体实现对控制量的操作(如改变阀门、挡板、转速、开关的
闭合、电动机的启停等),即改变了被控对象的输入以达到对被控对象的输出进行控制的目的。从信号处理的功能上
讲,该环节的功能是把接收到的弱电量转换成非电量或强电量的物理量,从这种功能上讲,它是传感器的逆过程。
在控制系统中该环节也称为执行器。
  与传感器一样, 在当今的计算机控制系统中,该环节先把从计算机接收来的数字量转换成模拟量(弱电量),
进而再把它转换成非电量或强电量的物理量。现在,通常称这种执行器为智能(数字)执行器。

(7)偏差。即被控量的测量值与给定值之间的偏差。也称这个偏差为控制误差。控制系统的最主要控制目的就
是要消除这个偏差。
2.3自动控制系统的分类
2.3.1按被控对象特性分类
  过程控制,是指对工业生产过程实施的控制,包括连续生产过程和间歇(离散)生产过程。例如对发电过程、
化工过程、炼油过程、冶金过程、工件加工过程等进行的控制都属过程控制。连续过程控制要求被控系统的输出量
长期安全、稳定在希望的数值上,而离散生产过程要求能顺利完成预定的操作步即可。目前,工业生产系统日趋庞
大,系统结构复杂,人已经没有能力进行手动控制,如果不进行自动控制,根本无法生产。自动控制装置已经成为
大型设备不可分割的重要组成部分。现在,自动控制装置本身也已经成为重大设备和装置。当然,过程控制系统中
也包含程序控制。
  运动控制,是指对运动体进行的控制(过程)控制。例如,对机器人的控制、对飞行器的控制、对导弹的控
制、对运输工具的控制、对切削工件的机床控制等都属运动控制。运动控制要求运动体按希望的运动轨迹稳定运行
。运动控制研究的是运动体的姿态、位置、轨迹、稳定性等。对大多数运动体的控制与对连续生产过程的控制是完
全相同的,它们使用相同的控制理论对系统进行分析,它们所不同的仅仅是控制对象不同,对品质指标的要求有差
异而已。然而,对许多运动体的控制(如机器人、机床、电梯等)都包含过程和程序控制。
  程序控制,是指对离散事件系统进行的控制 (也称顺序控制)。程序控制要求被控系统按事先预定的操作步运
行,例如机械加工中的数控机床、大型设备的启动、大型锅炉检修时的煤灰清扫控制、电梯的运行、轨道交通的道
岔控制等均属于程序控制系统的范畴。当然,在程序控制系统中还包含着过程控制。就单纯的程序控制系统来讲,
多数情况下都属于开环控制。
2.3.2按系统输入输出的个数分类
控制系统按输入输出变量个数分类可以分为单变量控制系统和多变量控制系统。
  单变量控制系统,只有一个输入量和一个输出量的控制系统称为单变量控制系统,也称为单输入单输出
(SISO)控制系统。它又分为单回路反馈控制系统和双回路反馈控制系统。
  (1)单回路反馈控制系统。单回路反馈控制系统是过程控制中最基本的单元,是组成复杂系统的基础。许多复杂
系统的分析、设计与综合中也都利用了单回路的方法。
  (2)双回路反馈控制系统。在被控对象的迟延和惯性都比较大(即系统对输入的响应较慢)、工艺上对调节品质
要求又比较高,或者系统的内部扰动较大的情况下,单回路控制系统无法满足工艺要求,这就要求设计比较复杂的
控制系统以适应这要求。双回路控制系统是改善控制品质的最有效的方法之一,它得到了广泛的应用。
  多变量控制系统,有多于一个输入量或多于一个输出量的控制系统称为多变量控制系统,也称为多输入多输出
控制系统(MIMO)。例如,化工厂中的二元精馆塔控制系统是个双输入双输出系统。在火电厂中,机炉协调控制系统
就是典型的双输入双输出多变量控制系统,钢球磨煤机控制系统就是三输入三输出的多变量控制系统。导弹等飞行
器的控制、炼油等许多生产过程的控制都是多变量控制。
  在双输入双输出控制系统中,控制量u1发生变化时,不但影响被控量y1,还影响被控量y2。同样,当控制量u2发
生变化时,对y1和Y2同时产生影响。并且把这种被控对象称为耦合对象。因此,多变量系统的控制还是比较困难
的。现在,对多变量系统进行控制通常采用的方法有协调控制和解耦控制。
2.3.3按给定值信号的特点分类
  恒值控制系统,若自动控制系统的任务是保持被控量恒定不变,即当系统的输出偏离给定值时,通过控制作
用,总是使被控量等于恒值(给定值),则称其为恒值控制系统。这是生产过程中用的最多的一种控制系统,例如
发电机电压控制,电动机转速控制,电力网的频率(周波)控制,各种恒温、恒压、恒液位等控制都是属于恒值控制
系统。
  随动(随机)控制系统,随动控制系统又简称随动系统,它是给定信号随时间的变化规律事先不能确定的控制系
统,也即随动系统的给定信号值是随机的,它的控制任务就是在各种情况下快速、准确地使被控量跟踪给定值的变
化。例如自动跟踪卫星的雷达天线控制系统、导弹跟踪追寻目标时的轨迹控制系统、工业控制中的位置控制系统、
工业自动化仪表中的显示记录仪等均属于随动
  现在也把随动系统扩展到随机系统。随机系统不仅给定值信号是随机的,对它的干扰或系统本身的特性(参数)
也是随机的。例如,由于空气的湍流在飞机的机翼结构内引起的运动和应力就属于这一类问题。在这个例子中,可
以把随时间变化的气流状态看作是系统的输入,它是一个随机函数,只能知道它的统计特性。机翼的应力是系统的

输出,它也是一个随机函数,也只能知道它的统计特性。这种随机系统在实际工程中还有很多。对随机系统的控制
就称为随机控制。
  程序控制系统,在程序控制系统中,它的给定值按事先预定的规律变化,是一个已知的时间函数,或事件记
录,控制的目的是要求被控量按确定的给定值的时间函数(或事件)来改变,例如机械加工中的数控机床、轨道交通
中的道岔控制、电话交换机机等均属于程序控制系统的范畴。
  按被控对象特性分类与此种分类方法看似相同,但他们是有区别的。前者取决于被控对象的特性,后者取决于
希望值的特性。例如,对于加热炉自动温度控制系统来说,因为要求加热炉的温度要保持在一定的温度范围之间,
而不是保持在某恒定的温度上,所以如果按被控对象特性来分,加热炉自动温度控制系统属于过程控制,如果按希
望值的特性来分,它又属于程序控制。
2.3.4按系统中传输信号对时间的关系分类
  连续时间控制系统,当系统中各元件的输入量和输出量均是随时间变化的连续量或模拟量时,就称此类系统为
连续时间控制系统或模拟控制系统。连续系统的运动规律通常可用微分方程来描述。把连续时间控制系统也简称为
连续控制系统。
  离散时间控制系统,当控制系统中某处或多处的信号是脉冲序列或数码形式时,这种系统称为离散时间控制系
统或离散控制系统。通常采用数字计算机控制的系统都是离散系统,也称这类系统为数字控制系统。
2.3.5按系统的结构分类
  开环控制系统,指的是控制装置和被控对象之间只有顺向的控制作用而没有反向控制作用的控制方式。如果系
统存在破坏系统正常运行的干扰,而干扰又能被测量,则可以利用干扰信号产生开环控制作用,以补偿干扰对被控
量的影响。按开环补偿原理建立起来的系统又称为“前馈控制”。前馈控制是一种主动控制方式,即它能做到在干
扰影响被控量之前,就将干扰削弱或抵消。
  开环控制的特点是:系统结构和控制过程简单;造价低;调节速度快;控制作用或抗干扰能力单一;控制精度
不高。所以单纯的开环控制一般只能用于对控制性能要求较低且干扰因素较少的场合。
   单纯的前馈控制一般很难满足控制要求,这是因为系统往往存在很多干扰,不能一一补偿,而且有的干扰限于
技术条件而无法测量,也就无法实现前馈补偿。因此,其控制精度受到原理上的限制。
  闭环控制系统,是指控制装置和被控对象之间不仅有顺向的控制作用而且还有反向控制作用的控制方式。控制
系统的输出经测量变送器又反送至系统的输入端,形成所谓“反馈信号”’参与控制系统的调节,从而构成一个闭
环回路,且反馈信号与系统给定值极性相反,因此这种控制系统又称负反馈。控制器根据反馈信号和给定信号相比
较后所得到的偏差信号,经运算后输出控制作用去消除或尽可能地减小偏差,使被控量等于或接近给定值。由此可
见,闭环控制是按偏差进行的控制。
   闭环(负反馈)控制系统的一个突出优点就是,不管是由于干扰还是由于系统结构参数变化所引起的被控量偏
离给定值,都会产生控制作用去消除或减小此偏差。闭环(负反馈)控制系统的调节机理是:依据偏差调节,消除
或尽力减小偏差。
   这种控制系统也存在一些不足,控制作用只有在偏差出现之后才会产生,因此总是比前馈控制作用慢,当系统
在强干扰作用下时,被控量有可能产生较大波动。
  复合控制系统,就是将前馈控制与反馈控制有机结合在一起的一种控制方式。复合控制系统中由于前馈补偿控
制的存在,其对主要干扰具有更快的抑制速度,而且由于反馈控制的存在, 又可以保证被控变量的无差调节。因此,
复合控制系统尤其适用于控制系统中存在强扰动或者对控制系统的稳态精度和动态品质要求比较高,单纯闭环反馈
控制难以满足要求的时候。正是由于前馈加反馈控制系统的上述特点,使其称为工程控制中广泛采用的方法之一。
前馈加反馈复合控制便是本毕业设计所要研究的主角。
2.4系统的性能指标
2.4.1稳态误差
  稳态误差是对系统控制精度的一种度量,通常称为稳态性能,是控制系统一项重要的性能指标,它表示系统跟
踪输入信号或抑制干扰信号的能力。只有稳定的系统,研究稳态误差才有意义。
以下图为例计算控制系统稳态误差:

G1(s)=
G2(s)=
根据劳斯判据可以求得该系统为稳定系统,所以可以计算稳态误差:

=
R(s)

=

s=0=

=0.4
2.4.2系统动态性能
  控制系统的时间响应,从时间顺序上可以分为动态和稳态两个阶段。动态过程是指系统在输入信号作用下,输
出量从初始状态到接近最终状态的响应过程,而研究系统的时间响应,就必须研究动态过程的特点以及有关的性能
指标。
  通常在阶跃函数作用下测定或计算系统的动态性能。一般认为,阶跃输入对系统来说是最严峻的工作状态。所
以控制系统若在阶跃函数作用下的动态性能可以满足要求,那么系统在其他形式的输入函数作用下,其动态性能也
是令人满意的。

(1)上升时间 :对于具有振荡的系统,指单位阶跃响应从零第一次上升到稳态值所需的时间;对于单调变化
的系统,是指单位阶跃响应从稳态值的10%上升争90%所需的时间。
(2)峰值时间 :单位阶跃响应超过稳态值,到达第一个峰值所需的时间。
  (3)调节时间 :单位阶跃响应与稳态值之间的偏差达到规定的允许范围(稳态值 5%或 2%的区间),且以后
不再超出此范围的最短时间时间。
(4)超调量 %:单位阶跃响应的最大值超过稳态值的百分比,即:
%=
(5)延迟时间 :响应曲线第次达到其终值–半所需的时间。
  这些性能指标中,上升时间 ,峰值时间 ,延迟时间 ,反映了系统初始阶段的快慢程度;调节时间 表示
系统过渡过程持续的时间,它从总体上反映了系统的快速性;超调量 %反映了系统响应过程的平稳性;稳态误差
反映了系统复现和跟踪输入信号的能力,即控制系统的准确性。通常就以上升时间 、调节时间 、超调量 %和稳
态误差 这四个指标分别评价系统响应的快速性、平稳性和准确性。
2.5本章小结
  首先介绍了自动控制的发展以及其在工程项目中广泛的应用,其次介绍了自动控制系统的基本组成部分,自动
控制系统的分类以及不同类型自动控制系统在工程中不同的应用。最后介绍了自动控制系统的各项性能指标以及如
何运算,为本毕业设计后续的一些计算打下基础。

第三章 预备知识

3.1Laplace(拉普拉斯)变换
  Laplace积分变换理论(又称为运算微积分或算子微积分)是在19世纪末发展 起来的。首先是英国工程师O.
Heaviside (赫维赛德)发明了用运算法解决当时电工计算中的一些问题,但是缺乏严格的数学论证。后来,法国数
学家Laplace给出了严密的数学定义,称之为Laplace变换法。
  Laplace积分变换是为了简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉
普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接
在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它
可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,
都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述
系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性、分析控制系统的运动过程,以及综合
控制系统的校正装置提供了可能性。
Laplace变换是一种常用的积分变换,在电学、力学、控制论等工程技术与科学领域中有着广泛的应用。
常见的一些Laplace变换以及Laplace逆变换:
L[1]=
L[
L[
]=
]=1
[ ]=1
[
]=
[1]=

常用的一些Laplace变换性质:
线性性质,若L[ (t)]= (s),L[ (t)]= (s)其中
为常数,则:
L[
(t)+
(t)]= L[ (t)] + L[ (t)]
[
+
]=
[
+
]
微分性质,若L[f(t)]=F(s),则:
L[
]=sF(s)-f(0)
积分性质,若L[f(t)]=F(s),则:
3.2卷积概念


在t<0时,
=0,那么,含变量t的积分(下式):
该积分时t的函数,并且称之为

的卷积函数,记作
*
,即
*

卷积定理
若L[ (t)]= (s),L[ (t)]= (s),则:
L[ (t)*
(t)]=
[
]= (t)*
(t)
3.3控制系统状态空间模型
  在现代控制理论时期,为了描述复杂的系统,用状态空间描述代替了经典控制理论的传递函数描述。这是因为
传递函数仅能描述单输入单输出系统,即系统的外部描述,状态空间描述可以描述多输入多输出的系统,即系统的
内部描述。
  然而,在现代工程系统中,都有许多个被控量和控制量。在理论上总希望一个给定的控制量只影响它自己的被
控量。遗憾的是,在许多情况下一个控制量除了影响它所对应的被控量以外,往往还会干扰系统中的其他被控量。
这时就可以说,系统的各“输入-输出”通道之间存在耦合,或者说各控制量之间相互关联。把这样的被控系统称作
耦合系统。
  如果各通道之间存在耦合,那么第一个输入发生变化时,不但使与它对应的第一个输出发生变化,还会使第二
个输出也发生变化,因此第一个输入与第一个输出之间存在着一个传递函数。第一个输入与第二个输出之间也存在
着一个传递函数。相同的,第二个输入与第二个输出和第一个输出也都各自存在一个传递函数。
  对于现代工程系统来讲,用状态空间来描述多输入多输出系统并不是一种好的方法。这是因为通道中的传递函
数往往是高阶的、复杂的,如果把它转换成状态方程,并不是一件轻松的事。因此,在实际应用中,人们还是习惯
用传递函数加方框图的形式来描述复杂的系统。这种描述方式不但能了解系统的内部情况,还能知道组成系统各环
节的连接情况。
   现在对系统的分析需要求其数值解。在此情况下,起初不管用什么样的模型来描述控制系统,对其求数值解时
都必须把原始的数学模型转换成一阶微分方程组的形式,而一阶微分方程组就是状态空间模型。
我们将最小的一组能完全确定系统状态的变量称为系统的状态变量。并把
描述系统的n个状态变量(x1,x2,…,xn)所构成的向量X(t)称为状态向量,即:
X(t)=
  状态空间是将描述系统的n个状态变量x1,x2,……,xn,转换成x1轴,x2轴,……,xn轴所组成的n维空间。

把由状态变量和输入变量组成的描述系统的一阶微分方程组称为状态方程。线性系统状态方程的矩阵可以表示为:
=A(t)X(t)+B(t)U(t)
其中A(t)为状态矩阵,B(t)为输入矩阵。
3.4微分方程、传递函数与状态方程的转换
  对控制系统进行理论分析和数值求解时,经常需要将微分方程、传递函数转换成状态方程的形式。微分方程与
状态方程之间的转换通常存在两种形式,一种是输入函数无导数项,另一种是输入函数有导数项;传递函数与状态
方程的转换通常也存在两种转换形式,一种是串联法,而另一种是并联法。
3.4.1微分方程与状态方程的转换-输入函数无导数项
例如:
+++4y=5u
初始条件为:y(0)=1,(0)=2,(0)=3
使x1=y,x2=,x3=,可以得到:
=x1,
=x3,
=-4x1-3x2-2x3+5u

u
输出方程为:
y=
状态变量初值:
x1(0)=y(0)=1
x2(0)=
(0)=2
x3(0)=
(0)=3
推广到微分方程所描述的一般系统:
+an-1
+…+a1
+a0y(t)=b0u(t)

u
3.4.2微分方程与状态方程的转换-输入函数有导数项
例如:
+2+3+4y=5+6+7+8u
初始条件为:y(0)=1,(0)=2,(0)=3
对式子两边同时求一次不定积分,再把不能积分的项移至等式右边:
+2+3y=5+6+7u+
使
=8u-4y,带入上式得:
+2+3y=5+6+7u+x3
使用上述同样的方法得:
+2y=5+6u+
使
=6u+3x3-3y,得:

+2y=5 +6u+x2
再次积分:
y=5u+
使 =6u+x2-2y,得:
y=5u+x1
所以可以得到系统的状态方程为:
=-2x1+x2-4u
=-3x1+x3-8u
=-4x1-12u
输出方程为:
y=x1+5u
推广到微分方程的一般系统:
+
+…+

  • y=

+…+
t=0=y(0),
t=0=
t=0= (0),
t=0= (0),…,
(0)

u
输出方程:y=x1+ u
3.4.3传递函数与状态方程的转换-串联法

y(0)=1,
(0)=2,
(0)=3,
(0)=4
可以将传递函数改变成下图形式:
u
y
从图中可得:

=

,那么 =
,那么 =
,那么 =

u
输出方程为:

y=
3.4.4传递函数与状态方程的转换-并联法
将上述串联法使用的传递函数转换成下图形式:
1/6
-1/2
u y
1/2
-1/6
从图中可得:
= ,那么 = u
= -

,那么
=-

  • u
    ,那么 =-2 + u
  • u
    = -
    ,那么
    =-3
    整理可得系统状态方程描述:
    =

u
输出方程为:
y=
3.5连续系统的离散化
  控制器或被控对象的离散化是实现离散控制(或称计算机控制)的重要内容,被控对象常用零阶保持离散化方
法,由于信息技术的快速发展,控制系统中引进计算机(称为“计算机控制系统”或“离散控制系统”)执行控制
算法的做法越来越普及,可以充分运用计算机强大的计算、逻辑判断和记忆等功能。计算机控制系统中控制规律的
更改,只需改变相应的程序,改变了传统模拟控制系统中,改变控制规律需要改变硬件电路的缺陷,大大降低了系
统实现成本,缩短了工程周期。
零阶保持器的定义式为:
=U(kt),kt t
(3-4-1)
  为了将连续系统变成离散系统并与原系统相似,在使用零阶保持离散方法时,需要在系统的入口和出口处各加
上一个采样周期(在数值计算时把它称为计算步距)为T的采样开关,在入口处再加人一个保持器(H)和补偿器©。
  系统的输入信号U(t)离散后经过了一个再现环节H,使得离散后的信号又基本再现了原样。但此时的Un(t)已经是
U(t)的一种近似,不论使用什么样的保持器,也不可能恢复成原来的函数。为了提高再现(恢复)后的精度,有时在
保持器后面(或前面)加入一个补偿器c。下图为零阶保持器再现后的函数。

U(t)
t
3.6离散差分方程的求取
假设线性定常系统状态方程描述为:
=AX(t)+BU(t) (3-6-1)
其中A,B为常数阵。
对式子两边进行拉普拉斯变换,得:
sX(s)-X(0)=AX(s)+BU(s)
移项并引入单位矩阵I,得:
(sI-A)X(s)=X(0)-BU(s)
等式两边同时乘以
,得:
X(s)= ()1X(0)+ ()1BU(s)
两边再同时做拉普拉斯反变换,求得方程的解为:
X(t)=Φ(t)X(0)+
BU( )d (3-6-2)
Φ(t)为转移矩阵,Φ(t)=
另一种求状态方程解得方法:
在式(1-3-1)两边同时乘以
,经过整理得到:
BU(t)
[
]=
可以将上式改写成:
[
X(t)]=
BU(t) (3-6-3)
对式(1-3-2)两边积分,得:
X(t)=
X(0)+
BU( )d( ) (3-6-4)
根据式(1-3-2)和式(1-3-4),得:

Φ(t)=

矩阵指数定义式为:
=I+At+
+…
对于式(1-3-4),当t=kT时:
X(kT)=
X(0)+
BU( )d( ) (3-6-5)
当t=(k+1)T时:
X[(k+1)T]=
(3-6-6)
X(0)+
BU( )d( )
将式(1-3-6)减去
乘以式(1-3-5)得:
X[(k+1)T]=
X(kT)+
BU( )d( )(3-6-7)
  在推导式(1-3-7)的过程中未作任何近似的假设,该式是一种精确的离散值计算公式。但是,当U( )是一个复
杂的函数时,该式右端的积分是难以求得的。由于该积分的积分区间长度仅为T,当T较小时,一般来说U( )在这个
积分区间的变化是不大的。因此,可以加入采样及再现环节,以使U( )在积分区间内为一个简单的特殊函数,从而
使该积分计算容易进行。
当使用零阶保持器时,取补偿器的系数λ=1,r=0,即不进行补偿,则有
U(t)
kT
t
(k+1)T (3-6-8)
将式(3-5-8)和(3-4-1)带入式(3-5-7),并变换积分区间,得:
X[(k+1)T]=
X(kT)+
Bdt)U(kT) (3-6-9)
Bdt
令Φ(T)=
(T)=
则式(3-6-9)可改写为:
X[(k+1)T]= Φ(T)X(kT)+
(T) U(kT)
得到该式即为采用零阶保持器再现时系统的差分方程。
  如果系统的A、B阵是已知的,则离散化后的Φ(T)、
(T)阵也就可以求出。这样,利用式(3-5-9)在已知各
状态变量初始值的情况下,可以十分容易地求出不同采样时刻的状态变量的数值。
当取补偿器的系数λ=1,r=1 (即超前一拍补偿)时,零阶保持器下的差分方程则为:
X[(k+1)T]= Φ(T)X(kT)+
省去T,则可简写为:
(T) [U(k+1)T]
X(k+1)= Φ(T)X(k)+
3.7本章小结
(T) U(k+1)
  首先列举了几个常见的拉普拉斯变换与逆变换,以及它的一些性质。其次介绍了卷积的概念。然后,学习了何
为状态空间模型,状态方程;微分方程与状态方程在输入函数无导数项和输入函数有导数项不同情况下的转换,传
递函数与状态方程使用串联法和并联法时如何转换的。最后又学习了如何将连续系统离散化以及离散差分方程的求
取,为后续程序仿真提供支撑。

第四章 前馈加反馈控制系统优化设计

一个控制系统首先必须是稳定的,这是必要条件,但并不是充分条件。当满足稳定条件后,最重要的是,在一
定的条件下(超调量不能过大,执行机构不能大幅度频繁动作等),控制系统快速而稳妥地使被控量达到希望的值,

还要消除一切内外扰动。
  如果控制系统中存在强扰动(如, 对于汽包锅炉的水位控制系统,蒸汽量就属于强扰动),或者对控制系统的稳
态精度和动态品质的要求都很高时,闭环反馈控制就难以满足要求。如果控制系统的扰动可测量,这时可以考虑使
用前馈控制加反馈控制相结合的控制策略,并称为复合控制策略。这就是实际工程控制中广泛采用的方法之一。
4.1按给定值扰动补偿的复合控制策略
  有些系统要求对希望值要有足够快的响应,例如,火电机组的复合控制系统、雷达天线跟踪系统等。因为,这
时的希望值都是可测的,所以可以考虑使用前馈加反馈控制方案。此时,控制系统的方框图如图所示。在这里插入图片描述

在图中所示的按给定值扰动补偿的复合控制系统中,给定值输入号一方面作为闭环系统的给定值,使被控系统
的输出跟随这个给定信号,使被控系统的输出跟随这个给定信号,保持系统的稳态误差为零;另一方,作为前馈信
号,通过前馈补偿装置Gf(s)直接作用于被控对象W(s),这样就不需要等到系统出现偏差后再产生控制作用,而是在
给定值信号施加于控制系统的同时,就产生了补偿控制作用,因而,可以大大缩短调节时间。
  从图中可以看到,按给定值扰动补偿的复合控制系统,只对系统的给定值扰动起作用,对系统的其他扰动不起
作用。
选择补偿前馈装置Gf(s):
Uf(s)=Gf(s)R(s)
E(s)=R(s)-Y(s)
Uc(s)=Gc(s) E(s)
U(s)=Uf(s)+Uc(s)
Y(s)=W(s)U(s)
整理可得:
使分子为零,得到:
(4-1-1)
  则无论给定值信号怎样变化,误差信号e(t)恒为0,即控制系统不存在稳态误差,也没有动态误差,系统变成了
一个无惯性的高精度随动系统。把这种控制称为对给定输入信号的完全不变性控制。
   实现该控制方案的关键问题是能否找到满足式(4-1-1)的补偿装置Gf(s)。在一般情况下,被控对象的传递函
数W(s)具有比较复杂的形式,而且,其分母的阶次高于分子的阶次,这样通过式(4-1-1)求出的Gf(s)的分子阶次
要高于分母的阶次,因此,如果式(4-1-1)中含有纯微分甚至高阶纯微分项,这在物理上是难以实现的。虽然现在
可以用数值计算来实现含纯微分的前馈补偿器Gf(s),但是由于其分子的阶次高于分母的阶次,当给定值为阶跃信号
时,计算机得到的Uf的数值解也将是一个很大的数,理论上是无穷大。因此,物理上的执行器还是不能接收此信
号。
   综上分析可以看出,按对给定值信号的误差全补偿条件式(4-1-1)选择的Gf(s),只在理论上成立,但是在工
程实际中只能实现部分补偿。
以下图为例求取控制系统给定值扰动补偿:
在这里插入图片描述

G1(s)=
G2(s)=
控制系统中b所示的为给定值前馈控制

R(s)
在动静态全补偿时,令
b=
=0,可得:
所以在b=
时,无论输入形式如何,系统动静态均无差。即测量值始终无差跟踪给定值。

=
=在这里插入图片描述

令阶跃扰动下的稳态误差为零,即 =0,得b=2。
所以,在b=2时,阶跃扰动下的系统无静态误差。
4.2按外部扰动补偿的复合控制策略
当某些外部扰动可测量时,可以通过前馈补偿装置消除这个扰动。按外部扰动补偿的复合控制系统结构如图:
在这里插入图片描述

在图中,外部扰动R2(s)是一个可测量的信号,一方面,它作用于被控系统,对被控系统产生不利影响;另一方
面,它作用于前馈补偿器,使其产生控制作用Uf(s),与反馈控制器的输出Uc(s)叠加生成对被控系统的整体控制作
用。其中,前馈补偿器的控制作用Uf(s)用来抵消外扰R2(s)对被控系统的不利影响。
因此,为使被控系统的输出完全不受外扰R2(s)的影响,应该选择前馈补偿器Gf(s)使:
Gf(s)W(s)R2(s)+Wd(s)R2(s)=0
即:
Gf(s)=-
同样的以下图为例求取控制系统给定值扰动补偿:
控制系统中a所示的为扰动前馈控制
G1(s)=
G2(s)=

,N(s)=
N(s)
在动静态全补偿时,令
a=-(s+2)
=0,可得:
所以在a=-(s+2)时,无论扰动形式如何,测量值始终不变。

令阶跃扰动下的稳态误差为零,即
=0,得a=-2。
所以,在a=-2时,阶跃扰动下的系统无静态误差。
4.3本章小结
  本章主要介绍了按给定值扰动补偿的复合控制策略和按外部扰动补偿的复合控制策略,以一个控制系统为例
子,分别计算出了动静态全补偿和静态补偿数值,为本毕业设计所研究的控制系统提供参考。

第五章 前馈加反馈控制系统优化仿真

5.1按给定值扰动补偿的复合控制
  对于绝大多数的控制系统,都可以把它化成规范化方框图的描述形式。那么根据规范化方框图的定义,在方框
图中仅含有比例、积分、微分、惯性和纯迟延环节,因此可以事先求出这些环节的差分方程的通用式,以后套用即
可,就不需要每次求解差分方程了。

其中u表示输入,x表示输出,k,k+1,则是kT和(k+1)T的缩写
(1)积分环节( ):
x(k+1)=x(k)+
Tu(k)
(5)惯性环节:(
)
x(k+1)=
x(k)+kp(1-
)u(k)
(5)微分环节:( s)
x(k+1)= [u(k+1)-u(k)]
如果计算x(k+1)时还不知道u(k+1),则;
x(k+1)= [u(k)-u(k-1)]
(4)纯迟延环节:(
x(k+1)=u(k+1-m)
)
  下图为某300MW循环流化床锅炉在60%负荷下的床温系统使用静态前馈补偿加反馈复合控制MATLAB仿真:

Gc(s)= (1+
W(s)=
)
, =429 , =53
首先将Gc(s)转换成与之对应的差分方程:
(k+1)=
(k+1)=
e(k)
(k)+
T/
e(k)
(k+1)=
(k)+
53×(1-
)×e(k)
(k+1)=
[ (k)-
(k-1)]/ T
upid(k+1)=
(k+1)+
(k+1)+
(k+1)+Gf
再将W(s)转换成差分方程:
(k+1)=
(k)+ 5.77×(1-
)×upid(k)

(k+1)=
(k)+ (1-

(k)
  由前一章节可以计算出静态补偿Gf(s)=1/5.77,再根据得到的差分方程可编制MATLAB仿真程序并得到相应的仿
真曲线:
clear all;
DT=1;ST=3000;LP=ST/DT;
DTA=4.8;Ti=429;Td=53;
K=5.77;T=224.18;Tao=86;
LD=round(Tao/DT);Xd(1:LD)=0;
A=exp(-DT/T);B=1-A;C=exp(-DT/0.1/Td);D=Td*(1-C);
xi=0;x=0;x1=0;xd0=0;z=0;
Gf=1/5.77;
for i=1:LP
e=1-z;
xp=e;
xi=xi+DT/Tie;
xd1=C
xd0+De;
xd=(xd1-xd0)/DT;xd0=xd1;
upi=(xp+xi)/DTA;
upid=(xp+xi+xd)/DTA;
upid=upid+Gf;
x1=A
x1+KBupid;
x=Ax+Bx1;
z=Xd(LD);
for j=LD👎2;Xd(j)=Xd(j-1);end
Xd(1)=x;
t(i)=i*DT;y(i)=z;u(i)=upid;
end
subplot(2,1,1),plot(t,u,‘b’);hold on;
xlabel(‘t’);
ylabel(‘u’);
subplot(2,1,2),plot(t,y,‘b’);hold on;
xlabel(‘t’);
ylabel(‘y’);


clear all;
DT=1;ST=3000;LP=ST/DT;
DTA=4.8;Ti=429;Td=53;
K=5.77;T=224.18;Tao=86;
LD=round(Tao/DT);Xd(1:LD)=0;
A=exp(-DT/T);B=1-A;C=exp(-DT/0.1/Td);D=Td*(1-C);
xi=0;x=0;x1=0;xd0=0;z=0;
Gf=1/5.77;
for i=1:LP
e=1-z;
xp=e;
xi=xi+DT/Tie;
xd1=C
xd0+De;
xd=(xd1-xd0)/DT;xd0=xd1;
upi=(xp+xi)/DTA;
upid=(xp+xi+xd)/DTA;
upid=upid+Gf;
x1=A
x1+KBupid;
x=Ax+Bx1;
z=Xd(LD);
for j=LD👎2;Xd(j)=Xd(j-1);end
Xd(1)=x;
t(i)=iDT;y(i)=z;u(i)=upid;
end
subplot(2,1,1),plot(t,u,‘b’);hold on;
xlabel(‘t’);
ylabel(‘u’);
subplot(2,1,2),plot(t,y,‘b’);hold on;
xlabel(‘t’);
ylabel(‘y’);
clear all;
DT=1;ST=3000;LP=ST/DT;
DTA=4.8;Ti=429;Td=53;
K=5.77;T=224.18;Tao=86;
LD=round(Tao/DT);Xd(1:LD)=0;
A=exp(-DT/T);B=1-A;C=exp(-DT/0.1/Td);D=Td
(1-C);
xi=0;x=0;x1=0;xd0=0;z=0;
Gf=0.11;
for i=1:LP

e=1-z;
xp=e;
xi=xi+DT/Tie;
xd1=C
xd0+De;
xd=(xd1-xd0)/DT;xd0=xd1;
upi=(xp+xi)/DTA;
upid=(xp+xi+xd)/DTA;
upid=upid+Gf;
x1=A
x1+KBupid;
x=Ax+Bx1;
z=Xd(LD);
for j=LD👎2;Xd(j)=Xd(j-1);end
Xd(1)=x;
t(i)=iDT;y(i)=z;u(i)=upid;
end
subplot(2,1,1),plot(t,u,‘-.’);hold on;
xlabel(‘t’);
ylabel(‘u’);
subplot(2,1,2),plot(t,y,‘-.’);hold on;
xlabel(‘t’);
ylabel(‘y’);
clear all;
DT=1;ST=3000;LP=ST/DT;
DTA=4.8;Ti=429;Td=53;
K=5.77;T=224.18;Tao=86;
LD=round(Tao/DT);Xd(1:LD)=0;
A=exp(-DT/T);B=1-A;C=exp(-DT/0.1/Td);D=Td
(1-C);
xi=0;x=0;x1=0;xd0=0;z=0;
Mp_1=5;Mp_h=20;FAI_1=0.90;FAI_h=0.98;
Q=0;
Gf=0;
for i=1:LP
e=1-z;
xp=e;
xi=xi+DT/Tie;
xd1=C
xd0+De;
xd=(xd1-xd0)/DT;xd0=xd1;
upi=(xp+xi)/DTA;
upid=(xp+xi+xd)/DTA;
upid=upid+Gf;
x1=A
x1+KBupid;
x=Ax+Bx1;
z=Xd(LD);
for j=LD👎2;Xd(j)=Xd(j-1);end
Xd(1)=x;
t(i)=i*DT;y(i)=z;u(i)=upid;
end

subplot(2,1,1),plot(t,u,‘–’);hold on;
xlabel(‘t’);
ylabel(‘u’);
legend(‘Gf=1/5.77’,‘Gf=0.11’,’ Gf=0’);
subplot(2,1,2),plot(t,y,‘–’);hold on;
xlabel(‘t’);
ylabel(‘y’);
legend(‘Gf=1/5.77’,‘Gf=0.11’,’ Gf=0’);在这里插入图片描述

从该图中可以看出,优化前馈补偿系数后,取得了较好的控制品质,调节速度得到了很大的提高,超调量也在
允许范围内。
5.2按外部扰动补偿的复合控制
在这里插入图片描述

Gc(s)=
W(s)=
(1+ )
Wd(s)=
由上一章节知识可以算出:
Gf(s)=4
  上图为某火电机组的主蒸汽温度控制系统,采用喷水减温的控制方式。燃料量R2(s)对主蒸汽温度的影响是可以
测量的,所以把它作为前馈信号,设计全补偿前馈控制器。MATLAB仿真为:
clear all;
DT=1;ST=1000;LP=ST/DT;
a1=exp(-DT/70);b1=1-a1;
a2=exp(-DT/40);b2=1-a2;
DTA=0.32;Ti=42;r=0;D=1;
xi=0;x1=0;x2=0;x3=0;x4=0;z1=0;z2=0;h=0;
for i=1:LP
e=r-h;
xi=xi+DT/DTA/Tie;
xpi=xi+e/DTA;
   z1=z1+DT
(-80/1600z1+z2+(140/1600-4900/160080/1600)D);
z2=z2+DT
(-1/1600z1+(1/1600-4900/1600/1600)D);
zd=4
(z1+4900/1600
D);
u=xpi-zd;
if u>8;u=8;end
if u<-8;u=-8;end
x1=a1x1+0.4b1u;
x2=a1
x2+b1x1;
x3=a2
x3+1.6b2D;
x4=a2x4+b2x3;
h=x2+x4;
y(i)=h;U(i)=-u;t(i)=DTi;
end
subplot(2,1,1),plot(t,U,‘b’);hold on;
subplot(2,1,2),plot(t,y,‘b’);hold on;
clear all;
DT=1;ST=1000;LP=ST/DT;
a1=exp(-DT/70);b1=1-a1;
a2=exp(-DT/40);b2=1-a2;
DTA=0.32;Ti=42;r=0;D=1;
xi=0;x1=0;x2=0;x3=0;x4=0;z1=0;z2=0;h=0;
for i=1:LP
e=r-h;
xi=xi+DT/DTA/Ti
e;
xpi=xi+e/DTA;
zd=0;

u=xpi-zd;
x1=a1x1+0.4b1u;
x2=a1
x2+b1x1;
x3=a2
x3+1.6b2D;
x4=a2x4+b2x3;
h=x2+x4;
y(i)=h;U(i)=-u;t(i)=DTi;
end
subplot(2,1,1),plot(t,U,‘-.’);hold on;
subplot(2,1,2),plot(t,y,‘-.’);hold on;
clear all;
DT=1;ST=1000;LP=ST/DT;
a1=exp(-DT/70);b1=1-a1;
a2=exp(-DT/40);b2=1-a2;
DTA=0.32;Ti=42;r=0;D=1;
xi=0;x1=0;x2=0;x3=0;x4=0;z1=0;z2=0;h=0;
for i=1:LP
e=r-h;
xi=xi+DT/DTA/Ti
e;
xpi=xi+e/DTA;
   z1=z1+DT*(-80/1600z1+z2+(140/1600-4900/160080/1600)D);
z2=z2+DT
(-1/1600z1+(1/1600-4900/1600/1600)D);
zd=4
(z1+4900/1600
D);
u=xpi-zd;
x1=a1x1+0.4b1u;
x2=a1
x2+b1x1;
x3=a2
x3+1.6b2D;
x4=a2x4+b2x3;
h=x2+x4;
y(i)=h;U(i)=-u;t(i)=DT*i;
end
subplot(2,1,1),plot(t,U,‘–’);hold on;
legend(‘有补偿(u限幅) ‘,‘无补偿’,‘有补偿(u不限幅)’);
xlabel(‘t’);
ylabel(‘u’);
subplot(2,1,2),plot(t,y,’–’);hold on;
legend('有补偿(u限幅) ',‘无补偿’,‘有补偿(u不限幅)’);
xlabel(‘t’);
ylabel(‘y’);


得到的仿真曲线为下图:
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/145519f4d54345f095d732a4d8ba360e.png)



 
  从图中可以看出,按外部扰动加入前馈补偿器后,当产生外部扰动时,由于前馈补偿器的加入,几乎可以完全
消除外部信号扰动对控制系统输出产生的影响。从图中复合控制器的输出曲线上可以看到,当加入前馈补偿器后,
复合控制器的输出几乎增大了一倍,所以这便需要对复合控制器的输出进行限幅,
  令-8<u<8,但对复合控制器的输出进行限幅后,就不能对外部扰动进行完全补偿,下面对其进行静态补偿。

clear all;
DT=1;ST=1000;LP=ST/DT;
a1=exp(-DT/70);b1=1-a1;
a2=exp(-DT/40);b2=1-a2;
DTA=0.32;Ti=42;r=0;D=1;
xi=0;x1=0;x2=0;x3=0;x4=0;z1=0;z2=0;h=0;
for i=1:LP
e=r-h;
xi=xi+DT/DTA/Tie;
xpi=xi+e/DTA;
zd=4
D;
u=xpi-zd;
x1=a1x1+0.4b1u;
x2=a1
x2+b1x1;
x3=a2
x3+1.6b2D;
x4=a2x4+b2x3;
h=x2+x4;
y(i)=h;U(i)=-u;t(i)=DTi;
end
subplot(2,1,1),plot(t,U,‘b’);hold on;
subplot(2,1,2),plot(t,y,‘b’);hold on;
clear all;
DT=1;ST=1000;LP=ST/DT;
a1=exp(-DT/70);b1=1-a1;
a2=exp(-DT/40);b2=1-a2;
DTA=0.32;Ti=42;r=0;D=1;
xi=0;x1=0;x2=0;x3=0;x4=0;z1=0;z2=0;h=0;
for i=1:LP
e=r-h;
xi=xi+DT/DTA/Ti
e;
xpi=xi+e/DTA;

zd=0;
u=xpi-zd;
x1=a1x1+0.4b1u;
x2=a1
x2+b1x1;
x3=a2
x3+1.6b2D;
x4=a2x4+b2x3;
h=x2+x4;
y(i)=h;U(i)=-u;t(i)=DTi;
end
subplot(2,1,1),plot(t,U,‘-.’);hold on;
subplot(2,1,2),plot(t,y,‘-.’);hold on;
clear all;
DT=1;ST=1000;LP=ST/DT;
a1=exp(-DT/70);b1=1-a1;
a2=exp(-DT/40);b2=1-a2;
DTA=0.32;Ti=42;r=0;D=1;
xi=0;x1=0;x2=0;x3=0;x4=0;z1=0;z2=0;h=0;
for i=1:LP
e=r-h;
xi=xi+DT/DTA/Ti
e;
xpi=xi+e/DTA;
   z1=z1+DT*(-80/1600z1+z2+(140/1600-4900/160080/1600)D);
z2=z2+DT
(-1/1600z1+(1/1600-4900/1600/1600)D);
zd=4
(z1+4900/1600
D);
u=xpi-zd;
x1=a1x1+0.4b1u;
x2=a1
x2+b1x1;
x3=a2
x3+1.6b2D;
x4=a2x4+b2x3;
h=x2+x4;
y(i)=h;U(i)=-u;t(i)=DT*i;
end
subplot(2,1,1),plot(t,U,‘–’);hold on;
legend(‘静态补偿’,‘无补偿’,‘全补偿’);
xlabel(‘t’);
ylabel(‘u’);
subplot(2,1,2),plot(t,y,‘–’);hold on;
legend(‘静态补偿’,‘无补偿’,‘全补偿’);
xlabel(‘t’);
ylabel(‘y’);


得到的仿真曲线如下:
![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/bd82d340bad5405ca9db47d0c3226294.png)


 
  从该图中可以看到,加入静态补偿器后,外部扰动时,起控制品质得到了很大的改善,而且与不加补偿器时相
比,复合控制器的最大输出幅值仅仅略有增加。

## 第六章 结论

  单一的前馈控制具有局限性,对干扰因素和被控系统运行状态的变化趋势预测得不够准确;对被控系统在未来
运行过程中可能出现的状态偏差的时机、性质、方向、程度把握得不准确。亦或者是由于相应的调控措施不恰当;
实施前馈控制的时机把握得不适时等,都有可能引起前馈控制失误,致使被控系统在运行过程中偏离给定状态。所
以,单一前馈控制的风险性大,可靠性差。
  单一的反馈控制也具有其局限性,第一:有可能出现反馈过时现象。造成反馈过时有各种可能的原因:反馈信
息通道不畅通,偏差信息不能及时地反馈到施控系统;反馈信息通道失真,被控系统运行的偏差状态不能如实地反映
到施控系统。反馈控制还具有其自身所不可克服的缺点:滞后性。反馈控制是跟随着被控系统的运行,并根据状态偏
差的出现而进行调节和控制的。所以,无论反馈控制如何及时,它都是在干扰因素已经影响和破坏了被控系统的运行
状态,被控系统的运行已经偏离了给定状态并形成了相应的状态偏差以后迸行的。它相对于干扰因素的破坏和状态
偏差的出现来说,具有明显的滞后性。因此,反馈控制不能避免状态偏差的出现,不能防患于未然。
  前馈加反馈的控制复合控制方式,能够弥补各自存在的不足,既可以发挥前馈控制对特定校正及时的优点,又
能够保持反馈控制能抑制闭合回路多个干扰的优势和对被控变量始终给予实时检验的长处,使控制系统的控制水平
有显著的提高。对于给定值扰动和外部扰动实施全补偿时,无论扰动信号怎样变化,误差值都恒定为0,在这种情况
下系统将变为一个无惯性的高精度随动系统。但若是补偿环节在理论计算中得到的是一个分子阶次高于分母阶次
项,即具有纯微分项甚至是一个高阶纯微分项,这在物理上是难以实现的,那么全补偿就只能是理论中的计算。当
加入前馈补偿器进行全补偿后,复合控制器的输出也会有大幅度的增加,就需要对复合控制器的输出进行限幅,从
之前的仿真的曲线上可以看出,在对复合控制器的输出进行限幅后,对外部补偿就不能进行完全补偿,所以在大多
数前馈加反馈的控制系统在实际工程中只能实现部分
补偿。尽管如此,若能对控制系统实施部分的补偿,也可以优化控制系统的性能。

## 致谢

  光阴如白驹过隙,回想过往,2017年入学时的场景仍历历在目,毕业曾经是那么的遥遥无期,而现在却已经到
了跟前。四年里,我得到了来自很多老师和同学的帮助,让我感受到了集体生活的温暖。在此期间,我接触到了很
多在各自的领域绽放光芒的人,耀眼而夺目。大概有目标的人都干劲十足,生命的每一天都是新鲜而抱着期待的。
这是充满回忆、伴随着我的巨大成长的四年。
  本文是在导师陈磐讲师的悉心指导下完成的。从论文的选题、开题报告的撰写、资料的查找、程序的编写、完
善和运行到最后的定稿,陈老师提出了很多宝贵的建议,为我的课题指明了方向。在专业问题上,她认真负责,治
学严谨,在我遇到疑惑,难题时往往能使我恍然大悟,茅塞顿开;在生活中,她细心耐心,关心我的就业情况。在
此感谢陈老师几个月来的谆谆教诲,无论是治学还是为人,她都是值得我学习的榜样,是我的人生中的一位良师益
友。
  同时我还要感谢我身边的同学,在设计的过程中给与的帮助,以及在软件使用及其他资料分享方面给与的帮
助,对此我对于那些同学从内心表达真挚的感谢。同时感谢能动院的老师和辅导员,多谢四年来对于我的关心以及
帮助,让我在大学的生活里受益匪浅,我将在今后的工作中努力实现自我价值,为社会主义现代化建设添砖加瓦。
在此对于那些帮助过我的人再次表示由衷的感谢。



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值