复数在初等数学问题中的应用

系统简介

复数集是实数集的一种延拓,并且复数原理应用于各个领域. 利用复数的性质来解决一些初等数学问题,解决几个基本问题,例如代数,三角,几何向量等。这样可以从一个方面强化概念,揭示概念的本质,同时灵活把握概念之间的关系,加深理解理顺的条件,以解决实际问题的需要.另一方面有助于激发学生的逆向思维能力,为学生的解题提供另外一种有利的方法.更有助于培养学生的数学技能,促进学生的思维发展,都有着重要的意义[2]p1.因此本文论述了复数在几何关系、三角问题、解析几何等之间的桥梁以及在构造恰当的复数形式解决数学问题作出了一些探讨.
关键词 复数 代数 初等数学 三角问题 解析几何

引 言

本文主要介绍了复数在初等数学中的应用。通过查阅参考文献,在阐明复数和复数的意义及其运算的几何意义的基础上,详细说明了复数在初等数学中的应用。利用与复数有关的性质,着重解决代数,三角函数,几何等问题。本文通过许多例子说明了复数在初等数学问题解决中的应用,重点突出了在解决过程中,运用复数及其相关知识后,问题就会变得更加简便、巧妙.

1.预备知识

a)设复数,其中为实数,则称为复数的实部,用符号表示,称为复数的虚部,用符号表示.
b)复数的共轭复数,用符号 表示,并规定, ,.
c)复数绝对值,用符号表示,并规定.
d)若复数,则存在一个有向角,使 则式称为复数的极式,有向角称为辐角,当 时, 称为主辐角,用符号 表示.[8]p1
e)复数与的和定义如下:
f)复数与的差的定义如下:
g)复数与的积的定义如下:
h)复数与的商的定义如下:

2.复数的几何表示

2.1复数的模
这种复数形式与复杂平面上的点一一对应,并将“点”用作“数”的同义词,从而为以几何语言和方法研究复杂函数的问题和将复杂函数应用于实际奠定了基础.

向量的长度称为的模或绝对值,记作
2.2复数的辐角
在的情况,以正实轴为始边,以表示的向量为终边的角的弧度数称为的辐角,记,这时,有.
辐角的主值可以由反正切 的主值.
按下列关系来确定

其中,
又有(1)的辐角等于与的辐角之和
(2)的辐角等于与的辐角之差
例1 已知,,求:
(1) (2)
解:(1)原式为
(2)的一个辐角为,的一个辐角为,所以的一个辐角为,所以.
例2 已知,,求.
解:因为,所以
所以可设
所以有
2.3复数的表示形式[6]p2
根据复数的运算法则可知,两个复数和的加、减法运算和对应向量的加减法运算一致(如图1.2,图1.3)
在这里插入图片描述

图1.2       

在这里插入图片描述

                      图1.3	

我们又知道,表示之间的距离(图1.3),因此由图1.2和图1.3,我们有 (三角不等式);
在这里插入图片描述

      图1.4    

在这里插入图片描述

                      图1.5

一对共轭复数和在复平面内的位置是关于实轴对称的(如图1.5),因而,如果不在负实轴和原点上,还有
利用直角坐标与极坐标的关系:, 称为复数的三角表示式.
再利用欧拉(Euler)公式:,有——复数的指数表示式.
例3: 将下列复数化为三角表示式与指数表示式.
1); 2)
解: 1),有
所以有z的三角表示式为
则指数表示为.
2),
又 ‘’

故三角表示式为
所以其指数表示为
例4 设,为两个任意复数,证明:
1);
2)
证:1)
2)因为

所以另外,许多平面图形可以用方程式(或不等式)来确定它所表示的平面图形[4]p5-p6
⑴圆的复数方程:
⑵椭圆的复数方程:
若,轨迹不存在.
若,轨迹表示线段
若,轨迹表示椭圆
⑶双曲线的复数方程为
若,轨迹表示双曲线
若,轨迹表示两条射线
若,轨迹不存在
⑷线段的复数方程
例4 求下列方程所表示的曲线:
1);
2);
3)
4)
答:1)复数对应的点轨迹以原点为圆心,以1为半径的圆周
2)复数对应的点轨迹以为端点的中垂线
3)复数对应的点轨迹以为圆心,1为半径的圆面(不包括边界)
4)复数对应的点轨迹以为端点的线段的中点.

3.复数的几何意义

3.1复数绝对值的几何意义
设复数,则表示点到原点的距离,即,(如图3.1)
在这里插入图片描述

        图3.1    

在这里插入图片描述

              图3.2

3.2共轭复数的几何意义
设在复数平面上所对应的点为
(1)在复数平面上所对应的点为,则两点对称于实轴(轴).
(2)在复数平面上所对应的点为,则两点对称于虚轴(轴)
(3)在复数平面上所对应的点为,则两点对称于原点
3.3复数加法的几何意义
在复数平面上所对应的点为
在复数平面上所对应的点为,
在复数平面上所对应的点为,则:
(1)当三点不共线时,则四边形为一个平行四边形,(如图3.3),则表示平行四边形的对角线的长度.
(2)当三点共线时,则线段与线段的中点会重合(如3.4)
在这里插入图片描述

           图3.3           

在这里插入图片描述

                  图3.4

3.4复数减法的几何意义
在复数平面上所对应的点为
在复数平面上所对应的点为,
在复数平面上所对应的点为

3.5复数乘法的几何意义
在复数平面上所对应的点为
在复数平面上所对应的点为,
则在复数平面上所对应的点为

旋转角时,乘以;当向量顺时针旋转角时,乘以
3.6复数除法的几何意义
在复数平面上所对应的点为
在复数平面上所对应的点为,
在复数平面上所对应的点为

4.复数的综合应用

复数的多种复数形式,决定复数的多面性,因此在数学中复数可以作为数学的缩影。通过沟通代数,三角,几何之间的关系,三者就有了复数的联系和统一。但是,教材中对复数的几何意义及其应用进行了分析的较少,下面就复数的几何意义及其应用做出分析:
4.1运用复数的模构造复数
例5 求函数的最大值.
解:设,
则有,

故有.
4.2复数的开方[9]p10-p11
1)若,则,.
2).
3)若非零复数,则z的n次方根有n个,即
4)i的乘法法则:,,,(其中).
5)1的三次方根可以根据复数的性质得出:
6)若设,则三个根为或 具有的性质为:,,.
7)共轭复数的性质:;;;;
例6 计算(1)
(2)
(3)
解:(1)原式=;
(2)原式=

(3)原式:

例7 解方程
解:用公式
解原方程,即有
于是,
即有,
所以有.
例8 求方程的所有根.
解:由,得,
于是有
取,得,
取,得
取,得,
故方程共有三个根,分别为,,.
4.3关于求解复数的一元二次方程
a)对于复数的一元二次方程,求根公式,根与系数关系成立.
b)如果一元二次方程的系数有虚数,则用来判断根的情况,即是实系数方程实根的判别式.
c)实系数一元二次方程若有虚根,则两个虚根互为共轭复数.
例9 方程有实根,求实数a的值.
解:设,则有
由得出 或.
将代入,得,可得对应的,.
将代入,得,可得对应的,.
所以,此时方程两根为3, 或,此时方程两根为-1,.
例10 已知实数满足不等式,试判断方程有无实根,并给出证明.
解:因为,解得,所以 .
又,因为,所以,.
因此得方程无实根 .
例11 已知复数w满足(i为虚数单位),,求一个以z为根的实系数一元二次方程.
解:因为,所以,所以.
若实系数一元二次方程有虚根,则必有共轭虚根,
因为,
所以所求得一元二次方程为.
4.4复平面上两点间的距离
设两复数,分别对应复平面上两点,,故有.
故复平面上两点之间的距离可以用:来表示
例12 1)设复数,在复平面内对应的点分别是,,则,两点间的距离?
2)设,,求的取值范围.
解:1)由题意可得,两点间的坐标为、,
故,两点间的距离为
2)设,则有,
又因为,即有.
因此有.
4.5积商复数表示旋转
由复数积的运算,
复数商得运算知,
有表示把向量绕逆时针方向旋转角度后再将模伸长为原来的倍的向量所表示的复数;
有表示把向量OZ绕顺时针方向旋转角度后再将模缩为原来的分之一的向量所表示的复数 .
例13 复数在复平面上对应的向量顺时针旋转一个角,得向量,若对应的复数为,则旋转的最小正角?
解:

例14 已知复数乘法,i为虚数单位.其几何意义是将复数在复平面内对应的点绕原点逆时针旋转角,求将点绕原点逆时针旋转得到的点的坐标 ?
解:设点,设与轴的夹角为,则,
所以,,
若逆时针旋转得到的点,
则,.
所以点的坐标为.
4.6和差复数表示平移——平行四边形法则、三角形法
.
例15 设点所对应的复数分别是和,复数对应点在线段上,复数满足,
(1)当固定而变化时,分别求与的对应点在复平面上的轨迹;
(2)当同时变化时,分别求,的对应点所形成的曲线族在复平面上的覆盖的面积.
解:(1)依题意可设,由此有 ,
故的轨迹是以为圆心的单位圆
故的轨迹是以原点为圆心,以为半径的圆
(2)由复数和的意义知,表示把单位圆向右平移一个单位后,再向上、下平移个单位(正上负下),
由于,故所覆盖的区域为两个半圆夹正方形,而由于,
故表示圆旋转后模伸长的圆,其所覆盖的区域为夹在与的两圆之间的圆环.
4.7运用复数知识求解三角问题[13]p16-p17
4.7.1证明三角不等式
例16 已知,.求证:
证明:设,则,

所以
4.7.2求解角的大小
例17 (1)已知三边都不相等的三角形ABC的三内角A,B,C满足,设,,求的值
解:因为,
所以

因为,所以有;,
又,所以,
上述化简得,所以,,
所以当,
当时,
(2)已知为锐角,且,.求的值
解:设,
由已知条件得,
所以因为为锐角,所以
4.7.3利用复数的三角形式化归为相应的三角问题
例18 (1)已知复数、满足条件且,求复数的值
解:因为
设,
代入,根据复数相等的性质,有:

解得
所以有
故所求得
(3)设,,,,求.
解法1:设,
则有

化简得:,于是也有.
所以有
解法2:,所以是一个三角形的三边,
根据余弦定理,向量,的夹角满足
所以,从而
4.7.4利用三角形式求解最值问题
例19 设满足,求的最大值和最小值
解:设,由已知的,
即有.
因为,所以有、
又因为,则有.
即可知
解之得:
所以有;.
4.8运用复数知识求解代数问题[12]p20-p21
4.8.1求函数的最值
例20 已知,求函数u=f(x,y)=的最大值.
解:设,

所以
因为.所以
当且仅当,即 (此时时取等号),的最大值为
4.8.2利用复数的代数形式化归为代数问题
例21 已知复数满足条件且,求的取值范围
解: 设,则
代入题设等式得
所以有,消去,得
又因为,所以,所以
可解得
又因为,所以有
所以.
所以解得
所以可得的取值范围为.
4.8.3求函数的值域或最值问题.
例22 已知复数满足.求的最大值和最小值
解:设,
因为.
所以满足方程.只需求得.由,则
又因为,即
所以有当,即时,可得
所以当时,即有时
所以有
4.8.4证明无理不等式
例23 设, ,求证:
证明:设,,

可知因此原命题得证.
4.9运用复数知识求解几何问题
4.9.1证明平面几何问题 [1][15]p22
例24 证明:三个复数,,成为一个等边三角形的充要条件为
解:假若,,为等边三角形,则要使向量旋转,则满足,,,两边同时平方,得:
4.9.2运用复数处理解析几何问题[14]p22-p23
例25 已知正方形ABCD中两个顶点和,求B、D两点的坐标.
解:线段AC中点E为(1,-1),,
所以点B的复数表示为:,
点D的复数表示为:,
即B、D两点的坐标分别为,.
例 4.9.3:设,,三点适合条件,.证明:,,三点是内接于单位圆的一个正三角形的顶点.
解:设
则 ,,是方程的三个根.
又,
所以有
又因为,.
所以有
化简得,所以,,是的三个根.
又因为,所以,,均匀的分布在单位圆上.
即命题得证.

结 论

复数是解决数学问题的主要工具之一,基于复数的特性和几何意义及其综合应用本文大致就从几个方面说明了.首先,通过复数的加减乘除法研究了几何方面的应用;然后从复数在初等数学中的应用阐述了在几何问题上的证明;最后,运用复数的知识进一步探讨用复数方法解决几何问题和三角问题.
运用复数的方法证明几何问题具有很强的说服力,此外,它的应用不仅仅限于本文所提到的事例,而且在其他数学方法中发挥不可替代的作用多深入的了解探讨复数方法,可以培养我们解决问题的能力,也可培养我们的思维能力等.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值