基于SSM基于在线阅读系统mysql数据源

这是一个基于SSM框架(SpringMvc、Spring、Mybatis)开发的在线阅读系统,采用MySQL作为数据源。项目包括源代码和数据库脚本,详细注释方便学习。开发环境为Eclipse、MYSQL、JDK1.8和Tomcat 7。系统使用EasyUI、HTML、JavaScript、CSS和JQUERY等技术,结合Ajax和log4j,实现了MVC架构的前后台分离。主要功能未详述,代码已上传至GitHub。
摘要由CSDN通过智能技术生成

基于SSM基于在线阅读系统mysql数据源mysql数据源1.包含源程序,数据库脚本。代码和数据库脚本都有详细注释。
2.课题设计仅供参考学习使用,可以在此基础上进行扩展完善
开发环境:
Eclipse ,MYSQL,JDK1.8,Tomcat 7

 代码已经上传github,下载地址https://github.com/21503882/reading
涉及技术点:
MVC模式、SpringMvc、Mybatis、Spring、EasyUI、HTML、JavaScript、CSS、JQUERY、log4j、Ajax等
系统采用Mybatis框架实现ORM对象关系映射,前台JSP实现,后台springMvc映射,使用Spring框架进行整合。适合学习J2EE的一段时间的熟手,代码思路清晰,注解详细,数据库用的是mysql5.1,服务器用的tomcat7,JDK版本1.8. 编程软件Eclispe J2EE版本。是典型MVC架构,并且前后台分离

主要功能:

package fz.bayes;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Map;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.ToolRunner;
import org.apache.mahout.classifier.naivebayes.AbstractNaiveBayesClassifier;
import org.apache.mahout.classifier.naivebayes.BayesUtils;
import org.apache.mahout.classifier.naivebayes.NaiveBayesModel;
import org.apache.mahout.classifier.naivebayes.StandardNaiveBayesClassifier;
import org.apache.mahout.classifier.naivebayes.training.WeightsMapper;
import org.apache.mahout.common.AbstractJob;
import org.apache.mahout.common.HadoopUtil;
import org.apache.mahout.math.Vector;
/**
 * ????????Job
 * ???
 * [
 *   2.1,3.2,1.2
	 2.1,3.2,1.3
   ]
   ??????????з???(???????????????)
 * @author fansy
 *
 */
public class BayesClassifiedJob extends AbstractJob {
	/**
	 * @param args
	 * @throws Exception 
	 */
	public static void main(String[] args) throws Exception {
		ToolRunner.run(new Configuration(), new BayesClassifiedJob(),args);
	}
	
	@Override
	public int run(String[] args) throws Exception {
		addInputOption();
	    addOutputOption();
	    addOption("model","m", "The file where bayesian model store ");
	    addOption("labelIndex","labelIndex", "The file where the index store ");
	    addOption("labelNumber","ln", "The labels number ");
	    addOption("mapreduce","mr", "Whether use mapreduce, true use ,else not use ");
	    addOption("SV","SV","The input vector splitter ,default is comma",",");
	    
	    if (parseArguments(args) == null) {
		      return -1;
		}
	    Configuration conf=getConf();
	    Path input = getInputPath();
	    Path output = getOutputPath();
	    String labelNumber=getOption("labelNumber");
	    String modelPath=getOption("model");
	    String useMR = getOption("mapreduce");
	    String SV = getOption("SV");
	    String labelIndex = getOption("labelIndex");
	    int returnCode=-1;
	    if("true".endsWith(useMR)){
	    	returnCode = useMRToClassify(conf,labelNumber,modelPath,input,output,SV,labelIndex);
	    }else{
	    	returnCode = classify(conf,input, output, labelNumber, modelPath, SV, labelIndex);
	    }
	    return returnCode;
	}
	/**
	 * ??????
	 * @param conf
	 * @param input
	 * @param
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值