基于Python房价预测系统 数据分析 Flask框架 爬虫 随机森林回归预测模型、链家二手房 可视化大屏

1、项目介绍

技术栈:
Python房价预测分析系统 毕业设计 大屏 爬虫 机器学习
Flask框架、Echarts可视化、requests爬虫、随机森林回归预测模型、链家二手房

2、项目界面

(1)数据可视化大屏

在这里插入图片描述

(2)房价预测

在这里插入图片描述

(3)后台数据管理

在这里插入图片描述

(4)房价数据

在这里插入图片描述

(5)注册登录界面
在这里插入图片描述

3、项目说明

Python房价预测分析系统是基于Flask框架开发的一个应用程序。它使用了Echarts可视化库来展示数据,并使用requests爬虫库获取链家二手房的房价数据。系统通过随机森林回归预测模型来对房价进行预测和分析。

用户可以通过系统界面输入特定的房屋信息,例如面积、位置、楼层等,系统将根据这些信息预测房屋的价格。同时,系统还提供了可视化图表,帮助用户更直观地了解房价随时间和地理位置的变化趋势。

系统的核心算法是随机森林回归模型。该模型是一种集成学习算法,通过组合多个决策树模型来提高预测的准确性。在系统中,我们使用了已经收集到的链家二手房数据来训练模型,并通过交叉验证等技术来优化模型的性能。

总而言之,Python房价预测分析系统是一个基于Flask框架的应用程序,它利用Echarts可视化库展示数据,并使用requests爬虫库获取链家二手房数据。通过随机森林回归模型,系统可以预测和分析房价,并提供可视化图表帮助用户更好地理解房价趋势。

4、核心代码



from flask_admin import Admin
from run import app
from flask_admin.contrib.sqla import ModelView
from flask import current_app,redirect,url_for,request
from models import db,User,Case_item

class MyModelView(ModelView):
    def inaccessible_callback(self, name, **kwargs):
        # redirect to login page if user doesn't have access
        return redirect(url_for('login', next=request.url))
    
    
class MyCase_item(MyModelView):
    column_labels = dict(
        area = '行政区',
        title = '标题',
        community = '小区名',
        position = '位置',
        total_price ='总价',
        unit_price = '单价',
        hourseType = '房型',
        hourseSize = '面积',
        direction = '朝向',
        fitment = '装修',
    )

class MyUser(MyModelView):
    column_labels = dict(
        name='账号',
        email='邮箱',
        pwd='密码'
    )



admin = Admin(app=app, name='后台数据管理',template_mode='bootstrap3', base_template='admin/mybase.html')
admin.add_view(MyCase_item(Case_item, db.session,name='数据管理'))
admin.add_view(MyUser(User, db.session,name='用户管理'))


if __name__ == '__main__':
    app.run(debug=True,host='127.0.0.1')

5、源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,查看我的【用户名】、【专栏名称】、【顶部选题链接】就可以找到我啦🍅

感兴趣的可以先收藏起来,点赞、关注不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值