表4-4 3种数据类型之间的对应关系
|
Hibernate映射类型 |
Java类型 |
标准SQL类型 |
|
integer |
java.lang.Integer |
INTEGER |
|
long |
java.lang.Long |
BIGINT |
|
short |
java.lang.Short |
SMALLINT |
|
float |
java.lang.Float |
FLOAT |
|
double |
java.lang.Double |
DOUBLE |
|
big_decimal |
java.math.BigDecimal |
NUMERIC |
|
character |
java.lang.String |
CHAR(1) |
|
string |
java.lang.String |
VARCHAR |
|
byte |
byte或java.lang.Byte |
TINYINT |
|
boolean |
boolean或java.lang.Boolean |
BIT |
(续表)
|
Hibernate映射类型 |
Java类型 |
标准SQL类型 |
|
yes_no |
boolean或java.lang.Boolean |
CHAR(1)('Y'或'N') |
|
true_false |
boolean或java.lang.Boolean |
CHAR(1)('Y'或'N') |
|
date |
java.util.Date或java.sql.Date |
DATE |
|
time |
java.util.Date或java.sql.Time |
TIME |
|
timestamp |
java.util.Date或java.sql.Timestamp |
TIMESTAMP |
|
calendar |
java.util.Calendar |
TIMESTAMP |
|
calendar_date |
java.util.Calendar |
DATE |
|
binary |
byte[] |
VARBINARY或BLOB |
|
text |
java.lang.String |
CLOB |
|
serializable |
java.io.Serializable实例 |
VARBINARY或BLOB |
|
clob |
java.sql.Clob |
CLOB |
|
blob |
java.sql.Blob |
BLOB |
|
class |
java.lang.Class |
VARCHAR |
|
locale |
java.util.Locale |
VARCHAR |
|
timezone |
java.util.TimeZone |
VARCHAR |
|
currency |
java.util.Currency |
VARCHAR |
下面我们用实例演示上述映射数据类型的用法。
假如在MySQL数据库中有一张关系表datamap,如表4-5所示。
表4-5 datamap数据表
|
字 段 名 称 |
数 据 类 型 |
主 键 |
自 增 |
允 许 为 空 |
描 述 |
|
ID |
int(4) |
是 |
增1 |
ID号 | |
|
MYBOOLEAN |
bit(1) |
√ |
逻辑型数据 | ||
|
MYINT |
int(5) |
√ |
整型数据 | ||
|
MYLONG |
bigint(11) |
√ |
长整型数据 | ||
|
MYFLOAT |
float(8,2) |
√ |
单精度浮点型数据 | ||
|
MYDOUBLE |
double(10,2) |
√ |
双精度浮点型数据 | ||
|
MYDECIMAL |
decimal(10,2) |
√ |
DECIMAL型数据 | ||
|
MYSTRING |
varchar(100) |
√ |
字符串数据 | ||
|
MYTEXT |
text |
√ |
Text型数据 | ||
|
MYDATE |
date |
√ |
Date型数据 | ||
|
MYTIME |
time |
√ |
Time型数据 | ||
|
MYDATETIME |
datetime |
√ |
Datetime型数据 | ||
MYTIMESTAMP |
timestamp |
√ |
Timestamp型数据 | ||
|
MYBINARY |
varbinary(10240) |
√ |
Binary型数据 | ||
|
MYBLOB |
longblob |
√ |
Blob型数据 |
本文介绍Hibernate ORM框架中Java类型与SQL类型之间的映射关系,并通过MySQL数据库中的datamap表实例展示不同数据类型的映射应用。
884

被折叠的 条评论
为什么被折叠?



