乱搞+STL平衡树 序列

45 篇文章 0 订阅
36 篇文章 0 订阅

这里写图片描述
这里写图片描述

考虑两种情况:1,q=1;2,q>1;

  1. O(N)枚举一遍即可。
  2. 可以发现最长不会超过log。那么枚举起点的效率为N*logN?暴力可过?(其实这就是正解。。)只要枚举a[i]和a[i+1],算出最小公比。

    这里设k=a[i]/a[i+1] (假设a[i]>a[i+1])k=p1^x1*p2^x2…..。求出g=gcd(x1,x2….);最小q=p1^(x1/g)*p2^(x2/g)…..。
    其实,已知q<=1000,如果k满足条件,则k为q的某一次方,枚举暴力找即可。(真正的暴力可过)
    但是题目中为要求是一个子序列,所以不能重复。搞个set即可。

代码蛮丑的。。。。

#pragma GCC optimize("O3")
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<set>
#include<cmath>
#define N 100005
#define ll long long
using namespace std;
int read()
{
    int sum=0,f=1;char x=getchar();
    while(x<'0'||x>'9'){if(x=='-')f=-1;x=getchar();}
    while(x>='0'&&x<='9'){sum=(sum<<1)+(sum<<3)+x-'0';x=getchar();}
    return sum*f;
}
inline ll check(ll k)
{
    ll s=sqrt(k);
    for(ll i=2;i<=s&&i<=1000;i++)
        if(k%i==0)
        {
            ll j=k;
            while(j%i==0)j/=i;
            if(j==1)return i;
        }
    if(k<=1000)return k;
    return 0;
}
int n;ll a[N];
int main()
{
    //freopen("seq19.in","r",stdin);
    //freopen("hh.txt","w",stdout);
    n=read();
    for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
    int ans=2;
    for(int i=2,l=1;i<=n;i++)
    {
        if(a[i]==a[i-1])l++;
        else{ans=max(l,ans);l=1;}
        if(i==n)ans=max(ans,l);
    }
    set<ll> st;
    for(int i=1;i<n;i++)
    {
        ll x=a[i],y=a[i+1],k;
        if(x<y)swap(x,y);
        if(x%y||x==y)continue;
        k=x/y;k=check(k);
        if(k==0)continue;
        while(x%k==0)x/=k;
        while(y%k==0)y/=k;
        if(x!=y)continue;
        st.clear();st.insert(a[i]);st.insert(a[i+1]);
        for(int j=i+2;j<=n;j++)
        {
            if(st.count(a[j]))
            {
                if(ans<j-i)ans=j-i;
                break;
            }
            if(a[j]%x)
            {
                if(ans<j-i)ans=j-i;
                break;
            }
            ll g=a[j];g/=x;
            while(g%k==0)g/=k;
            if(g!=1)
            {
                if(ans<j-i)ans=j-i;
                break;
            }
            st.insert(a[j]);
        }
    }
    cout<<ans;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值