杂题 [Ceoi2010]A huge tower

本文提供了一道名为Ahugetower的算法竞赛题目的解决方案。该问题要求使用N块砖搭建高度为N层的塔,并确保上层砖不超出下层砖的长度超过特定值D。文章详细解释了解题思路,通过预先排序并统计合法放置位置的方法来求得所有可能的搭建方案数量。
摘要由CSDN通过智能技术生成

问题 A: [Ceoi2010]A huge tower
时间限制: 1 Sec 内存限制: 259 MB
题目描述
有N(2<=N<=620000)快砖,要搭一个N层的塔,要求:如果砖A在砖B上面,那么A不能比B的长度+D要长。问有几种方法,输出 答案 mod 1000000009的值
输入
第一行: N,D 第二行: N个数,表示每块砖的长度。
输出
方案数。输出要mod1000000009
样例输入
4 1
1 2 3 100
样例输出
4
如果按照从小到大的顺序向塔中插入砖。假设当前插入的砖(也就是最长的砖)在最下面,一定满足。假若不在最下面,设它上面的长为a,他下面的长为b,a+d<=x把最长砖抽去,因为x+d<=b,且x>=b,所以a+d<=b,原来一定也是合法方案。
所以找到a[i]-d<=x的砖的个数,+1(因为它可以放在最下面),也就是这块砖能放的方案数。累乘起来就是答案了。
因为开错模数 WA了5次QAQ

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define mod 1000000009
#define N 620002
#define ll long long
using namespace std;
int n;ll ans=1,d,a[N];
int main()
{
    scanf("%d%lld",&n,&d);
    for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
    sort(a+1,a+n+1);ll l=1;
    for(int i=1;i<=n;i++)
    {
        while(l<=n&&a[l]<a[i]-d)l++;
        ans=(ans*(i-l+1)*1LL)%mod;
    }
    printf("%lld\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值