UVa 1638 Pole Arrangement

27 篇文章 0 订阅
24 篇文章 0 订阅

题目

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51199

题解

dp(i,j,k)表示i根,左边看j根,右边看k根的情况数
从大到小放,在放好2~n的情况下,考虑放1。
1——–放最左边,则放后共有dp(i-1,j-1,k)种可能
2——–放最右边,则放后共有dp(i-1,j,k-1)种可能
3——–随便放中间,这时就看不到了,因为共有i-2个空隙,放后共有dp(i-1,j,k)*(i-2) 种可能
所以转移方程dp(i,j,k)=dp(i-1,j-1,k)+dp(i-1,j,k-1)+dp(i-1,j,k)*(i-2)
边界dp(1,1,1)=1;


一开始没想出来。觉得很难。后来一想,其实本质是找一种比较方便的方法,因为先放矮的会被后放的高的挡住,而且后放高的情况很复杂,但是后放矮的就只有三种情况,所以做题还是要找那个最核心的点。

代码

// QWsin
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define rep(i,x) for(int i=1;i<=x;i++)
using namespace std;
typedef unsigned long long ull;
const int maxn=20+10;

int n,l,r;
ull dp[maxn][maxn][maxn];

inline void solve()
{
    rep(i,n) rep(j,r) rep(k,r) dp[i][j][k]=0;

    scanf("%d%d%d",&n,&l,&r);
    dp[1][1][1]=1;
    for(int i=2;i<=n;i++)
        for(int j=1;j<=l;j++)
            for(int k=1;k<=r;k++)
                dp[i][j][k]=dp[i-1][j-1][k]+dp[i-1][j][k-1]+dp[i-1][j][k]*(i-2);
    cout<<dp[n][l][r]<<endl;
}

int main()
{
    int T;cin>>T;
    while(T--) solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值