题目
题解
对于固定的i,j可以作为左端点的前一个的条件是
(i−j)∗p/100>=(sum[i]−sum[j])
即
sum[i]∗100−i∗p<=sum[j]∗100−j∗p
(这里为了防止整除的时候出事情所以先两边乘个100),如果设
Ai=100∗sum[i]−i∗p
那么即是要求
min{j}(j<i且Aj<=Ai)
方法一:我比较智障用的权值线段树,第一次忘了把0扔进去,后来没有把 Ai 离散还T了一发,离散之后也比别人慢10倍,告诉我们线段树常数大的要死。
方法二:本来想过单调队列,但是因为直接取队首好像没法做,因为这样是找的最大的 Ai ,然后神犇说使得之前的 Ai 在队列中有序,单调增然后二分查找就行了。
代码
方法一 552ms
//QWsin
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF=(1<<30);
const int maxn=150000+10;
char s1[maxn],s2[maxn];
int n,p,val[maxn],sum[maxn],a[maxn],tmp[maxn];
struct Node{
int m;Node *lc,*rc;
Node(){m=INF,lc=rc=NULL;}
inline void UP(){m=min(lc->m,rc->m);}
}*root;
#define mid ((l+r)>>1)
void build(Node* &p,int l,int r)
{
p=new Node();if(l==r) return ;
build(p->lc,l,mid);build(p->rc,mid+1,r);p->UP();
}
void updata(Node* &p,const int &pos,const int &val,int l,int r)
{
if(l==r){p->m=min(p->m,val);return ;}
if(pos<=mid) updata(p->lc,pos,val,l,mid);
else updata(p->rc,pos,val,mid+1,r);p->UP();
}
int query(Node* &p,const int &L,const int &R,int l,int r)
{
if(L<=l&&r<=R) return p->m;
int ret=INF;
if(L<=mid) ret=min(ret,query(p->lc,L,R,l,mid));
if(mid<R ) ret=min(ret,query(p->rc,L,R,mid+1,r));
return ret;
}
inline void solve()
{
scanf("%s%s",s1+1,s2+1);
for(int i=1;i<=n;++i)
{
a[i]=(s1[i]!=s2[i]);
sum[i]=sum[i-1]+a[i];
tmp[i]=val[i]=100*sum[i]-i*p;
}
tmp[n+1]=val[n+1]=0;sort(tmp+1,tmp+n+2);
int k=unique(tmp+1,tmp+n+2)-tmp-1;
for(int i=1;i<=n+1;++i) val[i]=lower_bound(tmp+1,tmp+k+1,val[i])-tmp;
build(root,1,k);
int ans=-1;
updata(root,val[n+1],0,1,k);
for(int i=1;i<=n;++i)
{
ans=max(ans,i-query(root,val[i],k,1,k));
updata(root,val[i],i,1,k);
}
if(ans==-1) printf("No solution.\n");
else printf("%d\n",ans);
}
int main()
{
while(scanf("%d%d",&n,&p)==2){
if(!n&&!p) break;solve();
}
return 0;
}
方法二: 46ms
//QWsin
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF=(1<<30);
const int maxn=150000+10;
char s1[maxn],s2[maxn];
int n,p,val[maxn],sum[maxn],a[maxn],A[maxn];
int Que[maxn],id[maxn],Ql,Qr;
inline void solve()
{
scanf("%s%s",s1+1,s2+1);
for(int i=1;i<=n;++i)
{
a[i]=(s1[i]!=s2[i]);
sum[i]=sum[i-1]+a[i];
A[i]=100*sum[i]-i*p;
}
int ans=-1;Ql=1,Qr=0;
Que[++Qr]=0;id[Qr]=0;
for(int i=1;i<=n;++i)
{
int pos=lower_bound(Que+Ql,Que+Qr+1,A[i])-Que;
if(pos!=Qr+1) ans=max(ans,i-id[pos]);
if(A[i] > Que[Qr]) Que[++Qr]=A[i],id[Qr]=i;
}
if(ans==-1) printf("No solution.\n");
else printf("%d\n",ans);
}
int main()
{
while(scanf("%d%d",&n,&p)==2){
if(!n&&!p) break;solve();
}
return 0;
}