在map与reduce阶段有时候可能会出现各种非理想化的情景,导致数据计算和处理时会遇到一些瓶颈或问题,这里就列出来一些可参考的调优方案:
Map阶段调优:
- 自定义分区,减少数据倾斜;可以自定义一个类,继承Partitioner类,重写getPartition方法。这么做是因为有些业务场景中可能某个相同的key值对应的数据量太大,造成某个ReduceTask承担较大压力,这时我们可以通过自定义分区的方法,将key值在原来的基础上加上一些随机数,比如1,2,3,这样就可以将原来相同的key分放在不同的分区中,减轻某个单一ReduceTask的压力,以防止数据倾斜。
- 减少溢写次数;可以通过增大环形缓冲区的大小(mapreduce.task.io.sort.mb,默认是100MB)和增大环形缓冲区溢写的阈值(mapreduce.map.sort.spill.percent,默认是80%)来实现。因为这两个配置增大之后,就会减少溢写的次数,这样就会减少溢写文件,从而也就会减少后面合并溢写文件的次数等等后续操作,效率就会提高。
- 提高每次Merge的个数;通过提高mapreduce.task.io.sort.factor参数的值,