UVA 10328 -—— Coin Toss【DP & 大数】

博客详细分析了如何利用动态规划求解UVA 10328题目的思路,讨论了如何通过转化问题,设置状态转移方程来解决连续硬币正面向上的计数问题。文章涵盖了状态定义、非法状态的排除以及最终状态的计算,并给出了AC代码。
摘要由CSDN通过智能技术生成

题目传送门
在这里插入图片描述

题意:

给你一个硬币,抛掷n次,问出现连续至少k个正面向上(H)的情况有多少种。

分析:

原题中问出现连续至少k个H的情况,很难下手。我们可以试着将问题转化一下,设 dp[i][j] 表示抛掷i个硬币出现连续至多 j 个H 的情况种数。

实际出现连续至少k个H,即出现连续k个H,k+1个H,…n个H的并集,等价于dp[n][n]-dp[n][k-1],即从连续至多n个H的情况(所有抛掷情况种类数)减去连续至多(k-1)个H的情况,这保证得到的所有情况一定至少有k个连续的H。

现在问题就变成了怎么求dp[i][j]。

i <= j:
dp[i][j] = dp[i-1][j] × 2,即从上一阶段得到的抛掷序列后面增加正和反两种情况,如果出现连续的H个数大于j个,这种情况是非法的,但很显然此时不会出现这种情况。当前位置随便放。

i > j:
如果继续用 dp[i][j] = dp[i-1][j] × 2 就不行了。因为如果 从第 i - j 个到第 i - 1 全是H ,那么这时候在第i个位置再加一个H,就会出现连续的H个数大于j个的非法状态,所以我们需要减掉 从 i - j 到第 i - 1 全是H 的这种情况。那么这种情况有多少种呢?我们考虑该状态是如何转移而来的。试想第 i - j - 1 个位置应该是什么呢?很明显只能是T。如果是H那就会出现非法状态了。那在第 i - j - 1 之前的位置呢。无论H和T都可以,只要不出现连续的H个数大于j的非法状态即可,这就是 dp[i-j-2][j]

那么这样,dp[i][j] = dp[i-1][j] × 2 - dp[i-j-2][j]

但这还是不够的。我们之前的推导都是基于第i-j-1个位置一定存在的前提下(i>j不能保证第i-j-1个位置一定存在),那如果第i-j-1个位置不存在,第i-j-2个位置也就不存在,上述方程也就不成立了。但这种情况很好想,此时一定是i==j+1,从第1个位置到第j个位置全部都是H只有这一种情况,所以方程变成 dp[i][j]=dp[i-1][j] × 2 - 1

综上,状态转移方程为:
i<=j:dp[i][j] = dp[i-1][j] × 2;
i==j+1:dp[i][j] = dp[i-1][j] × 2 - 1;
i>j+1:dp[i][j] = dp[i-1][j] × 2 - dp[i-j-2][j]

ans=dp[n][n] - dp[n][k-1]

AC代码:

import java.math.BigInteger;
import java.util.Scanner;

public class Main 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值