HRBUST 1038——菜鸟和大牛【简单递推】

题目传送门


Description

blue和AutoGerk是好朋友。他们的相同点是都喜欢研究算法,不同点是AutoGerk已是大牛而blue还是菜鸟。blue经常拿一些自以为很难的问题去问AutoGerk,想难倒他,但是每次AutoGerk都能轻而易举地做出来。就在上个礼拜的星期天下午,AutoGerk正在玩游戏,blue又拿着他的问题来了。AutoGerk一看,依然是如此简单。AutoGerk很想玩他的游戏,但是又不想冷落朋友。于是他介绍你,同样是大牛级的人物,给blue,来回答他的问题。
blue的问题如下:
一个由n行数字组成的三角形,第i行有2i-1个正整数(小于等于1000),如下:

      3
    7 1 4
  2 4 3 6 2
8 5 2 9 3 6 2

要求你用笔从第1行画到第n(0 < n ≤ 100)行,从当前行往下画的时候只能在相邻的数字经过,也就是说,如果从一行的一个数往下画,只能选择其左下或者正下或者右下三个数中的一个(如果存在的话),把所有被画起来的数字相加,得到一个和,求能得到的最大的和的值是多少。
上例中能得到的最大的和为3 + 7 + 4 + 9 = 23.

Input
第一行,一个自然数T,表示总共给出的三角形数,对于每一个三角形,首先给出一个自然数n,表示将输入的三角形有n行。接下来有n行,第i行有2i-1个数字
Output
对于每个三角形,输出一个数,即能得到的最大的和。

Sample Input

2
2
1
1 2 3
4
3
7 1 4
2 4 3 6 2
8 5 2 9 3 6 2


Sample Output

4
23


AC-Code

#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <limits>
#include <queue>
#include <stack>
#include <string.h>
#include <string>
#include <vector>
#define LL long long
#define ll LL
#define MAXN 100005
#define min(a, b) (a < b ? a : b)
#define max(a, b) (a > b ? a : b)

using namespace std;

int arr[1005][1005];
int main(void){
    int T;    
    cin >> T;    
    while (T--) {    
        int n;        
        cin >> n;        
        memset(arr, 0, sizeof(arr));        
        for (int i = 1; i <= n; i++) {      
              for (int j = 1; j <= i * 2 - 1; j++) {        
                      cin >> arr[i][j];            
              }        
        }        
        for (int i = n; i >= 1; i--) {      
              for (int j = 1; j <= i * 2 - 1 ; j++) {         
                     arr[i - 1][j] += max(arr[i][j + 2], max(arr[i][j + 1], arr[i][j]));            
              }        
        }        
        cout << arr[1][1] << endl;    
    }    
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值