Python成长记十八(iterator与generator)

一、iterator即迭代器

      可以被next()函数调用并不断返回下一个值的对象称为迭代器,要创建一个iterator,必须实现一个有__iter__()和__next__()方法的类。

(1)可迭代对象(iterable),可用for in 语句遍历,比如列表(list),元组(tuple),集合(set) , 字典(dict) 等
(2)对象 class,一个类对象不能直接被for语句循环,可将一个类变为一个生成器,比如:

class BookClollection:
    def __init__(self):
        pass
    #实现方法1
    def __iter__(self):
        pass
    #实现方法2
    def __next__(self):
        pass

案例1:循环遍历类中的数据

class SkillClollection:
    def __init__(self):
        self.data = ['Q技能','W技能','E技能','R技能']
        self.cur = 0
    def __iter__(self):
        return self
    def __next__(self):
        if self.cur >= len(self.data):
            raise StopIteration()
        r = self.data[self.cur]
        self.cur +=1
        return r

skills = SkillClollection()
for skill in skills:
    print(skill)

结果:Q技能 W技能 E技能 R技能

   案例2:使用迭代器的next()方法

class SkillClollection:
    def __init__(self):
        self.data = ['Q技能','W技能','E技能','R技能']
        self.cur = 0
    def __iter__(self):
        return self
    def __next__(self):
        if self.cur >= len(self.data):
            raise StopIteration()
        r = self.data[self.cur]
        self.cur +=1
        return r

skills = SkillClollection()
print(next(skills))
print(next(skills))
print(next(skills))

结果:Q技能 W技能 E技能 R技能

迭代器的特性:一次性

案例3 :迭代器的一次性

class SkillClollection:
    def __init__(self):
        self.data = ['Q技能','W技能','E技能','R技能']
        self.cur = 0
    def __iter__(self):
        return self
    def __next__(self):
        if self.cur >= len(self.data):
            raise StopIteration()
        r = self.data[self.cur]
        self.cur +=1
        return r

skills = SkillClollection()

for skill in skills:
    print(skill)
for skill in skills:
    print(skill)

结果:Q技能 W技能 E技能 R技能
结论:只打印一次(如果要打印多次可以创建多个对象)

 如果要多次使用迭代器,除了案例3中创建对象的方法外,还可以使用浅拷贝或者深拷贝的方法:

案例4:使用浅拷贝的方法实现打印多次

import copy
class SkillClollection:
    def __init__(self):
        self.data = ['Q技能','W技能','E技能','R技能']
        self.cur = 0
    def __iter__(self):
        return self
    def __next__(self):
        if self.cur >= len(self.data):
            raise StopIteration()
        r = self.data[self.cur]
        self.cur +=1
        return r

skills = SkillClollection()
skill_copy = copy.copy(skills)
for skill in skills:
    print(skill)
for skill in skill_copy:
    print(skill)

结果:
	Q技能
	W技能
	E技能
	R技能
	Q技能
	W技能
	E技能
	R技能

案例5:使用深拷贝的方法实现打印多次

import copy
class SkillClollection:
    def __init__(self):
        self.data = ['Q技能','W技能','E技能','R技能']
        self.cur = 0
    def __iter__(self):
        return self
    def __next__(self):
        if self.cur >= len(self.data):
            raise StopIteration()
        r = self.data[self.cur]
        self.cur +=1
        return r

skills = SkillClollection()
skill_copy = copy.deepcopy(skills)
for skill in skills:
    print(skill)
for skill in skill_copy:
    print(skill)

二、generator即生成器,一个简单的创建iterator的途径,是一个能够返回迭代器对象的函数。

案例:打印0~100000

   #普通方法,消耗内存影响性能,比如:

n = [i for i in range(0, 10000)]
print(n)

  #迭代器方法

def gen(max):
    n = 0
    while n<=max:
        n+=1
        yield n
g = gen(10000)
print(next(g))
print(next(g))
print(next(g))
结果:1  2  3

原理:生成器内部没有保存数据,而是保存了算法

小提示:判断一个对象是否是Iterable对象,可用isinstance()方法

比如:

from collections import Iterable
#判断列表
a = isinstance([],Iterable)
#判断集合
b = isinstance({},Iterable)
#判断字符串
c = isinstance('asd',Iterable)
#判断元组
d = isinstance((x for x in range(10)),Iterable)
#判断Number
e = isinstance(100,Iterable)

print(a,b,c,d,e)

结果:True True True True False

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值