Python爬取NBA每日比赛比分

        自从学会了爬虫的基本用法之后,一些网页上的基本信息都可以很容易的爬取下来。今天练习爬取了腾讯NBA官网上的每日赛程的比分,就是这个:

        这个网站的信息同样是存储在json文件中,在其HTML静态文件中找不到。所以我们还是老方法,直接去找到那个json文件:

        在使用Python工具爬取下来这一页后,再观察其中的信息。通常这种json文件的字典中有用的信息是被一些无用的信息所包围的,所以分析时我们就一层一层的输出该字典,直到发现对我们有用的信息。此json文件的开头内容如下:

        可以发现,data这个key所对应的value中有今天的日期和队名,所以我们就输出data中的‘2020-03-11’所对应的value,找到其中有用的信息如下:

        可以猜想,leftName和rightName对应的就是比赛双方的队名,而leftGoal和rightGoal对应的就是双方得分,而这一点也可以从上面的图片中验证。由此我们就得到了这场比赛双方的得分情况。Python代码如下:

import urllib.request
import json
#json文件的URL地址
url="https://matchweb.sports.qq.com/kbs/list?from=NBA_PC&columnId=100000&startTime=2020-03-11&endTime=2020-03-17&from=sporthp&callback=ajaxExec&_=1583909839470"
#补充请求头信息
headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.100 Safari/537.36',
        'Referer': 'https://nba.stats.qq.com/schedule/'
    }
#获取数据
req=urllib.request.Request(url=url,headers=headers)
text=urllib.request.urlopen(req).read().decode('gbk')
#去文件开头的无用子串“ajaxExec”
text=text.strip("ajaxExec")
#去掉文件头尾的小括号
text=text[1:len(text)-1]
#加载为Python对象dic
content=json.loads(text)
#取出当前日期
date=list(content['data'].keys())[0]
print(date)
#输出当日所有比赛的比分
for i in content['data'][date]:
    print(i['leftName'],end='')
    print(" ",end='')
    print(i['leftGoal'],end='')
    print(":",end='')
    print(i['rightGoal'],end='')
    print(" ",end='')
    print(i['rightName'])

 

要在Python爬取NBA多赛季球队数据,你可以使用多种库,例如`requests`用于发送网络请求,`BeautifulSoup`用于解析HTML页面,以及`pandas`用于处理和保存数据。以下是一个简单的代码示例,演示了如何使用这些库来爬取NBA球队数据。 ```python import requests from bs4 import BeautifulSoup import pandas as pd # NBA球队数据的URL模板(这里需要一个实际可以爬取的网站的URL) url_template = "http://example.com/nba/teams/{season}" # 存储所有赛季球队数据的列表 teams_data = [] # 假设我们要爬取的是最近5个赛季的数据 for season in range(2018, 2023): # 构造URL url = url_template.format(season=season) # 发送GET请求 response = requests.get(url) # 如果请求成功 if response.status_code == 200: # 解析HTML内容 soup = BeautifulSoup(response.text, 'html.parser') # 根据页面结构提取球队数据,这里假设每个球队数据都在一个带有class="team"的div标签内 for team in soup.find_all('div', class_='team'): # 提取球队名称和相关信息,这里需要根据实际页面结构进行调整 team_name = team.find('h2', class_='team-name').text.strip() team_data = { 'Season': season, 'Team Name': team_name, # 添加其他需要爬取的数据字段 } teams_data.append(team_data) else: print(f"Failed to retrieve data for season {season}") # 将爬取的数据保存到CSV文件中 df = pd.DataFrame(teams_data) df.to_csv('nba_teams_data.csv', index=False) print("数据爬取完成并保存到CSV文件中") ``` 请注意,上述代码仅为示例,实际中需要根据目标网站的结构和数据格式进行相应的调整。在爬取数据之前,还需要考虑网站的使用条款以及爬虫的合法性问题。很多网站都有反爬虫机制,因此可能需要额外的处理,如设置请求头、使用代理等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值