《机器学习实战》学习——决策树算法代码

小游戏:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围。

决策树的工作原理与此类似,用户输入一系列数据,然后给出游戏的答案。决策树流行的一个很重要的原因是不需要了解机器学习的知识,就能搞明白决策树是如何工作的。

理解决策树的实例:

 

决策树的伪代码:

 

 

from math import log
import operator


def calcShannonEnt(dataSet):
    """
    计算频率来当做类别的概率;计算香农熵
    labelCounts是一个字典,键是label名称,对应的值是该label的数量
    创建labelCounts的目的是计算每个label的频率,以此来代替概率
    """
    numEntries = len(dataSet)
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值