零AI含量!纯随机数学无限生成逼真3D世界火了,普林斯顿华人一作|CVPR‘23

丰色 发自 凹非寺
量子位 | 公众号 QbitAI

谁说生成图像、视频一定要靠AI?

普林斯顿大学新出的神器,可无限生成逼真3D世界,特别强调“No AI”

68653e9854bff955fc59d2c2e19926ab.png

浅浅感受一下这个效果:

a855aa184b00a84ef9bf82953301420b.gif

84bfcf43509d4c5b70bef16f7b7fe433.gif

78e65c5b634de26363b9e5db75c2af68.gif

不要以为生成的只是一段视频,其实背后是一套完整的3D资产,基于建模软件Blender打造。

此时所有blender用户一起跟我:啊?

10911f4d7260748c0fbc7e10182f4f2d.png

如此一来,我们就能用参数来控制细节:

6ea1c6800233011aed016404dfd65f6e.gif

或者拿到相应的光流图、3D场景光流图、深度图、全景分割图等等,轻松hold住各种CV任务。

468932da17cbb4f6b9f196a1b6171a5c.gif

最最重要的是,它还免费、开源

妈妈真的再也不用担心我找不到高质量的3D数据投喂AI了……

a572898d5b721ed34e81d4797d1e6883.png

完整视频感受一下震撼:

100%基于随机数学的3D数据生成器

尽管AI发展迅猛,但目前CV领域的许多任务仍然缺乏高质量的数据,3D尤甚。

一个解决办法是用合成数据。事实证明,在这类数据上训练的模型在零样本的真实图像上也可以表现得很好。

但问题是,现有的大多数免费3D合成数据工具基本局限于单一场景:要么是自动驾驶相关,要么就是那种位于室内环境中的人造物体。

因此,为了扩大覆盖范围,尤其是真实世界里的自然场景,作者基于Blender打造了这个基于随机数学规则无限生成各种场景的Infinigen。

040bff80d765c0e18dfc9a835a0893fe.png

Infinigen主要利用Blender的“基元”(或原语),设计了一个程序规则库,通过编码完成真实自然场景各个对象的生成。

论文主要介绍了Infinigen的程序体系,包括:

  • Node Transpiler(节点转换器),可以自动将Blender节点图转化为Python代码,方便非程序员用户使用Infinigen。

如下图所示,它生成的代码更通用,既允许我们随机化输入参数,也允许随机化图结构。

f47ec66842dabd8d11d1941d900dc016.png

  • Generator Subsystems(生成器子系统),Infinigen的生成器是是一个个基于概率的程序,每个程序专门用于生成一个子对象(比如山脉或鱼类)。每个对象都有一组高级参数(比如山的总高度),用户可以使用Python API来调整这些参数,以实现对数据生成的细粒度控制。

  • Material Generators(材料生成器),一共有50个,每个都由一个能指定颜色和反射率的随机着色器和一个生成相应精细几何细节的局部几何生成器组成。

如下图由所示,它能保证非常真实的几何细节。

7ef0bc71b8075c297019d29f2c196f44.png

  • Terrain Generators(地形生成器),如下图所示,该生成器可以通过反复挤压生成巨石,使用Blender的内置插件生成小石块。

239396830027d198e0a60d4a6ce12769.png

并帮助Infinigen通过使用FLIP模拟动力学流体,使用Blender的粒子系统模拟天气。

f9bfbbe2f0d0993cd7af132e1ef85f22.png

  • Plants & Underwater Object Generators(植物和水下物体发生器),包括使用用随机游走等算法对树木生长进行建模,从而形成一个覆盖各种树木、灌木甚至仙人掌的3D世界。

b5a1555e4eac83a7d0c22a88937e405b.png

又或者是使用差异化生长、拉普拉斯生长和反应扩散制造各种珊瑚、使用几何节点图生成树叶、花朵、海藻、海带、软体动物和水母。

还有各种子生成器(比如生物生成器)就不一一介绍了。

b33acbe87c2d23f1b742226690320369.png

除了这些,Infinigen还包括一个图像渲染与Ground Truth提取程序,主要用于生成下图这些类型的图像。

其中对于前者,系统使用了Blender基于自然规律的路径跟踪渲染器Cycles来渲染图像。

8f17450785f3bb4fe0c423ef3304cf6c.png

作者介绍,虽然使用Blender开发了Infinigen的程序规则,不过程序生成的很大一部分是在Blender之外完成的。

另外,他们也表示,构建Infinigen是一项极大量的软件工程,光是它代码库的主分支就囊括了40485行代码

最后,Infinigen在2个Intel Xeon Silver 4114 @ 2.20GHz CPU和1个NVidia GPU上进行了基准测试,生成一对1080p图像的时间(wall time)为3.5小时

下表是它与现有合成数据集或生成器的比较。

c536e48a7fd0778988f2705969253e92.png

作者表示,从中可以看出,Infinigen最大的优点就是不需要任何外部参考资源库就能程序化地生成无限的自然3D数据,别的都不行。

团队介绍

Infinigen将在本周三的CVPR会议上进行Poster展示。

它的作者全部来自普林斯顿大学Vision & Learning Lab。

三位共同一作,其中一位叫Ma Zeyu,普林斯顿大学博士三年级在读,2020年本科毕业于清华大学电子工程专业。

通讯作者为普林斯顿大学计算机科学系副教授邓嘉

563f92a6588b2f85eaaa38e7fb32fc02.png

目前,Infinigen的代码已经上线GitHub,短短两天已有850个标星。

89993d19f54a7931c237c79d75d981a7.png

论文地址:
https://arxiv.org/abs/2306.09310
项目主页:
https://infinigen.org/
GitHub地址:
https://github.com/princeton-vl/infinigen

「AIGC+垂直领域社群」

招募中!

欢迎关注AIGC的伙伴们加入AIGC+垂直领域社群,一起学习、探索、创新AIGC!

请备注您想加入的垂直领域「教育」或「电商零售」,加入AIGC人才社群请备注「人才」&「姓名-公司-职位」。

e2c831445cfa244564de1a6da03e2089.png

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值