Transformer一作来卷多模态!学术图表也能看懂,100毫秒极速响应|免费试玩

明敏 发自 凹非寺
量子位 | 公众号 QbitAI

最近多模态大模型是真热闹啊。

这不,Transformer一作携团队也带来了新作,一个规模为80亿参数的多模态大模型Fuyu-8B

而且发布即开源,模型权重在Hugging Face上可以看到。

99bc4ee5a93764cfe14b901a24f9e6ef.png

该模型具备强大的图像理解能力。

照片、图表、PDF、界面UI都不在话下。

能从这么一张复杂的食物网里理清楚各个生物之间的关系。

提问:道格拉斯冷杉针叶缺失了,哪种生物会灭绝?

回答:红树田鼠。

256fe56b6b305de0589a8a71b5010b6b.png

也能从密密麻麻的连线图里找到,权游“小指头”扮演者Aidan Gillen出演过HBO两个系列的剧。

b787fdf979fa02f1f6d4d3c9ed7095e6.png

看得懂专业图表,可以帮你找到想要的数据。

提问:(左图)24、32、33、42这组数字序列中丢了哪个数?
回答:29

a1e5cbda6db08ca3c31d2a4540ed1590.png

一张包含多个图表的PDF也难不倒它。提问:加州哪里的工作前景不错?

Fuyu-8B可以准确找到对应的信息块,并给出正确答案“洛杉矶”。

7f2edb34040094a279975e472f3a4675.png

而且Fuyu-8B的处理速度很快,研究团队表示100毫秒内可反馈大图像处理结果。

同时它还很“轻巧”,不仅模型规模没超百亿,还没有使用图像编码器

这让它能更快速进行训练和推理,并支持处理任意大小图像

Hugging Face联创兼CTO看了都有点激动,表示假如自己还没有创业,那么这个项目会启发他做点什么。

ed85743fc2b2acfe5b0746b39eed0f7e.png

该成果来自Transformer一作Ashish Vaswani所在创业公司Adept。

目前该模型已开源,demo可线上试玩。

一个只有解码器的Transformer

现在在Hugging Face上即可体验Fuyu-8B的能力。

Demo中提供了两种任务。

  • 看图问答

  • 图像概述

可以上传一张图片然后对大模型进行提问。

b3e21a0093756d7a5f1c012d7897d130.png

或者是直接让它看图然后描述图片内容。

97c6bcdf2d9a8da22ca7d50c8b180e8d.png

大模型的常识水平不错,比如问它一道甜点是怎么做的?

它给出的回答是:

这道甜点是用一层层的酥皮做成的,上面点缀着开心果和帕玛森奶酪。

09a644607b554e4c453bfeba33fc712c.png

测试了下中文能力,发现它能理解中文,但是“习惯性”用英文回答。

e99f25c8b40d66cd0a404af0fd09eb81.png

模型采用了一种简单的架构:纯解码器Transformer

它没有图像编码器。图像块(image patch)绕过embedding lookup,即在嵌入矩阵中查找特定输入的过程,直接映射到Transformer的第一层。

这种架构使得模型能支持任意图像分辨率。

研究团队删除了图像特定位置嵌入,并按扫描线顺序(raster-scan order)输入尽可能多的图像token。

通过一个特殊的图像转换行符号,模型能知道在什么时候断行。

由此模型在训练时可以使用任意大小的图像。

这种架构也更进一步简化了模型的训练和推理过程。

12068509f0ef6b4ae6c9e0c18fa0f9d0.jpeg

这种架构模式也引起了不少网友的关注,有人就表示,之前总觉得大模型图像理解能力差是因为使用了固定大小的patch。

但Fuyu-8B反驳了他的这一想法。

6d931114fc33501622d30477bb201924.png

实验结果显示Fuyu-8B在多个任务中性能优于PaLM-e-12B和QWEN-VL(10B)。

研究团队还表示,刷榜不是他们本次工作的最终目的,所以模型没有进行优化。

3b1faad75075ae24336b0906c2c0bc60.png

他们构建这个大模型的真正目的是为了提升自家产品的能力。

Adept团队致力于打造一个AI Copilot。

这个Copilot能够理解用户屏幕上的内容(比如网页、PPT、PDF、图表等),并能辅助人类快速完成工作。

这就要求大模型需要能理解环境信息,同时可以代替人类进行操作。换言之,需要大模型能具备超强的图像理解能力。

所以这也是为啥Fuyu-8B会很强调对UI的理解能力。

比如它能理解你打开的窗口,以及窗口内的信息。

5462dbf4aecb0720228fc88322b96304.png

Adept:新晋独角兽

带来这一新工作的团队是Adept。

这是一家由Transformer一作、前OpenAI工程副总裁等业内大佬共同创立的AI公司。

它成立于2022年4月。目前已完成B轮融资,总融资额达4.15亿美元,公司估值超过10亿美元。

首席科学家是Ashish Vaswani。他是《Attention is all you need》的第一作者,平常看论文时经常出现的“(Vaswani et al., 2017)”就是这位大佬。

他博士毕业于南加州大学,在谷歌大脑工作已有5年。

73df94499188c4c7c8a893952ca7bbb9.jpeg

Transformer的另一位作者Niki Parmar也加入了该团队。
她在印度上完大学后,同样在南加州大学读完硕士,在谷歌工作了近7年。

7f1443a99bdff667de52dcb953dc13ef.jpeg

创始人兼CEO David Luan,是前OpenAI加州实验室工程副总裁,参与过GPT-2、GPT-3、CLIP、DALL-E等模型的开发,后来加入谷歌,曾任谷歌大脑大模型研究的Director。

2e524f3dd1b28088633cd0f295a391c0.jpeg

Adept致力于打造一个AI Copilot。

团队在去年推出的首项工作,就颇有AutoGPT那感觉。

他们打造的Action Transformer(ACT-1),会使用浏览器、Excel等,能理解人类给出的命令并完成相应操作。

比如想要在Excel表格中加上利润、利润率,只需把这段话输入给AI,它就能自己在对应行列创建公式完成任务了。

b32caf3383d713595fd6e96176aaa8cf.gif

同时该团队还非常关注开源工作。

今年先后推出的两项工作Persimmon-8B和Fuyu-8B,都已对外开源。

Demo试玩:
https://huggingface.co/spaces/adept/fuyu-8b-demo

参考链接:
[1]https://www.adept.ai/blog/fuyu-8b
[2]https://twitter.com/AdeptAILabs/status/1714682413983601046
[3]https://twitter.com/julien_c/status/1714694606095310876?s=20
[4]https://twitter.com/main_horse/status/1714684833488949519?s=20

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值