年轻人的第一个多模态大模型:1080Ti轻松运行,已开源在线可玩

Vary-toy是一个由旷视等机构研究人员开发的轻量级多模态大模型,可在消费级显卡上运行,具备文档OCR、视觉定位等多种功能,性能接近7B大模型。它已在GitHub开源,并展示了在多个基准测试中的优秀表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Vary-toy团队 投稿
量子位 | 公众号 QbitAI

一款名为Vary-toy的“年轻人的第一个多模态大模型”来了!

模型大小不到2B,消费级显卡可训练,GTX1080ti 8G的老显卡轻松运行。

想将一份文档图片转换成Markdown格式?以往需要文本识别、布局检测和排序、公式表格处理、文本清洗等多个步骤。

现在只需一句话命令:

3787a32ddec36ca04d8e63eb0509c559.gif

无论中英文,图片中的大段文字都能分分钟提取出来:

086d9773ef3d3cec25412ff10ad6cc1e.png

对一张图做对象检测,还是能给出具体坐标的那种:

cbe0a45908fe8f0d37294e47879b1111.png

这项研究由来自旷视、国科大、华中大的研究人员共同提出。

据介绍,Vary-toy虽小,但却几乎涵盖了目前LVLM(大型视觉语言模型)主流研究中的所有能力:文档OCR识别(Document OCR)、视觉定位(Visual Grounding)、图像描述(Image Caption)、视觉问答(VQA)。

60570c575e46dd95882713cab3edbcd6.png

现在,Vary-toy代码和模型均已开源,并有在线demo可试玩。

7db9d054f6bb083d53c6dddcf911f48e.png

网友一边表示感兴趣,一边关注点在于旧·GTX1080,心情belike:

0f752e35254c94654a379aed155998da.png

“缩小版”Vary

其实,早在去年12月Vary团队就发布了Vary的首项研究成果“Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models”。

研究人员指出CLIP视觉词表在密集感知能力上的不足,并用一种简单有效的扩充词表方案给出了一种全新的OCR范式。

Vary发布后得到广泛关注,目前Github1.2k+ star,但也有不少人因为资源受限运行不了。

考虑到目前开源得很好且性能出色的“小”VLM比较少,于是该团队又新发布了号称是“年轻人的第一个多模大模型”的Vary-toy。

与Vary相比,Vary-toy除了小之外,也训练了更强的视觉词表,新的词表不再将模型局限于文档级OCR,而是给出了一个更加通用和全面的视觉词表,其不仅能做文档级OCR,还能做通用视觉目标检测。

那这究竟是如何做到的?

Vary-toy的模型结构和训练流程如下图所示,总的来说,训练共分两个阶段。

6dd7ba493875ddb41bb1ef87891d9c38.png

首先在第一阶段,使用Vary-tiny+结构,预训练出一个相比原版Vary更好的视觉词表,新的视觉词表解决了原Vary只用它做文档级OCR的网络容量浪费问题、以及没有充分利用到SAM预训练优势的问题。

然后在第二阶段中,将第一阶段中训好的视觉词表merge到最终结构进行multi-task training/SFT。

众所周知,一个好的数据配比对于产生一个能力全面的VLM是至关重要的。

因此在预训练阶段,Vary-toy使用了5种任务类型的数据构建对话,数据配比和示例prompt如下图所示:

a413360140cd05d99252cbfcd3a6039d.png

而在SFT阶段,只使用了LLaVA-80K数据。更多的技术细节,可以查看Vary-toy的技术报告。

实验测试结果

Vary-toy在DocVQA、ChartQA、RefCOCO、MMVet四个基准测试的得分如下:

403d581c54fe7e6953f5e550e016fb2f.png

Vary-toy在DocVQA上可以达到 65.6%的ANLS,在ChartQA上达到59.1%的准确率,RefCOCO88.1%的准确率:

91f5465653026069a03782f2c4a75d27.png

MMVet上可以达到29%准确率,无论是从基准测试评分上还是可视化效果上,不到2B的Vary-toy甚至能和一些流行的7B模型的性能一较高下。

430cc2ff5a8fd57abc2672d46e1116ad.png

项目链接:
[1]https://arxiv.org/abs/2401.12503
[3]https://varytoy.github.io/

—  —

点这里👇关注我,记得标星哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值