Quoit Design [散点中距离最近的两点距离][分治]

题意:散点中距离最近的两点距离除以2,给定n个点的坐标。
思路:暴力复杂度O(n2)不可行,分治处理,每次从中间分,然后求左边点的最小距离,右边点的最小距离,然后算出来一个点在左侧一个点在右侧情况的最小距离,求最小。
处理过程中,判断两侧的最小距离d = min(左, 右),然后判断中间点的过程时,剪掉那些水平距离到mid大于d的点,然后讲这些候选点按照y排序,剪掉点对之间y距大于d的点,再去求可能的最小值。
有点类似于归并的过程。

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
#include<list>
#include<stack>
#include<cmath>
#include<iomanip>
using namespace std;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
void debug() {cout << "ok running!" << endl;}
struct node
{
    double x, y;
}a[100005];
int temp[100005];
bool cmp1(node &a, node &b)
{
    return a.x < b.x;
}
bool cmp2(int p, int q)
{
    return a[p].y < a[q].y;
}
double dis(node &a, node &b)
{
    return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}
double solve(int l, int r)
{
    if(l == r)
        return 0;
    if(l + 1 == r)
        return dis(a[l], a[r]);
    if(l + 2 == r)
    {
        double m = min(dis(a[l], a[r]), dis(a[l+1], a[r]));
        return min(m, dis(a[l], a[l+1]));
    }
    int mid = (l + r) >> 1;
    double d = min(solve(l, mid), solve(mid+1, r));
    int cnt = 0;
    for(int i = l; i <= r; ++i)
    {
        if(a[i].x >= a[mid].x-d && a[i].x <= a[mid].x+d)
            temp[cnt++] = i;
    }
    sort(temp, temp+cnt, cmp2);
    for(int i = 0; i < cnt; ++i)
    {
        for(int j = i + 1; j < cnt; ++j)
        {
            if(a[temp[j]].y - a[temp[i]].y >= d)
                break;
            d = min(d,  dis(a[temp[i]], a[temp[j]]));
        }
    }
    return d;
}
int main()
{
    ios::sync_with_stdio(false);
    #ifndef ONLINE_JUDGE
    freopen("input.txt", "r", stdin);
    #endif // ONLINE_JUDGE
    int n;
    while(cin >> n)
    {
        if(n == 0) break;
        for(int i = 0; i < n; ++i)
            cin >> a[i].x >> a[i].y;
        sort(a, a+n, cmp1);
        double ans = solve(0, n-1)/2;
        ios::fixed;
        cout << fixed << setprecision(2) << ans << endl;
    }
    return 0;
}
Quoit Design”通常指的是一道经典的算法竞赛题目。该问题的核心是在平面上给定一系列的点,需要找出其中距离最近的两个点之间距离的一半,这个距离可以类比为游戏中套圈的半径设计。 ### 解决思路与步骤 1. **排序**:首先将所有点按照 $x$ 坐标进行排序。 2. **分治**:将排序后的点集从中间分成左右两部分,分别递归地在左右两部分中找出最近点对的距离 $d_1$ 和 $d_2$,并取 $d = \min(d_1, d_2)$。 3. **合并**:考虑跨越左右两部分的点对。找出所有 $x$ 坐标距离中间分割线不超过 $d$ 的点,将这些点按照 $y$ 坐标排序。然后遍历这些点,对于每个点,只需要检查它后面与它 $y$ 坐标差值不超过 $d$ 的点对,更新最小距离。 ### 示例代码(Python 实现) ```python import math def distance(p1, p2): return math.sqrt((p1[0] - p2[0])**2 + (p1[1] - p2[1])**2) def closest_pair(points): n = len(points) if n <= 3: min_dist = float('inf') for i in range(n): for j in range(i + 1, n): dist = distance(points[i], points[j]) if dist < min_dist: min_dist = dist return min_dist mid = n // 2 mid_point = points[mid] left_points = points[:mid] right_points = points[mid:] d_left = closest_pair(left_points) d_right = closest_pair(right_points) d = min(d_left, d_right) strip = [] for point in points: if abs(point[0] - mid_point[0]) < d: strip.append(point) strip.sort(key=lambda point: point[1]) for i in range(len(strip)): for j in range(i + 1, min(i + 7, len(strip))): dist = distance(strip[i], strip[j]) if dist < d: d = dist return d # 示例使用 points = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] points.sort() result = closest_pair(points) print(result / 2) ``` ### 复杂度分析 - **时间复杂度**:$O(n \log n)$,其中 $n$ 是点的数量。排序操作的时间复杂度是 $O(n \log n)$,分治和合并的过程也是 $O(n \log n)$。 - **空间复杂度**:$O(n)$,主要用于存储点集和递归调用栈。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值