Quoit Design [散点中距离最近的两点距离][分治]

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Qer_computerscience/article/details/77602128

题意:散点中距离最近的两点距离除以2,给定n个点的坐标。
思路:暴力复杂度O(n2)不可行,分治处理,每次从中间分,然后求左边点的最小距离,右边点的最小距离,然后算出来一个点在左侧一个点在右侧情况的最小距离,求最小。
处理过程中,判断两侧的最小距离d = min(左, 右),然后判断中间点的过程时,剪掉那些水平距离到mid大于d的点,然后讲这些候选点按照y排序,剪掉点对之间y距大于d的点,再去求可能的最小值。
有点类似于归并的过程。

#include<iostream>
#include<string>
#include<cstdio>
#include<cstring>
#include<bitset>
#include<algorithm>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<cstdlib>
#include<list>
#include<stack>
#include<cmath>
#include<iomanip>
using namespace std;
//#pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
void debug() {cout << "ok running!" << endl;}
struct node
{
    double x, y;
}a[100005];
int temp[100005];
bool cmp1(node &a, node &b)
{
    return a.x < b.x;
}
bool cmp2(int p, int q)
{
    return a[p].y < a[q].y;
}
double dis(node &a, node &b)
{
    return sqrt( (a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y) );
}
double solve(int l, int r)
{
    if(l == r)
        return 0;
    if(l + 1 == r)
        return dis(a[l], a[r]);
    if(l + 2 == r)
    {
        double m = min(dis(a[l], a[r]), dis(a[l+1], a[r]));
        return min(m, dis(a[l], a[l+1]));
    }
    int mid = (l + r) >> 1;
    double d = min(solve(l, mid), solve(mid+1, r));
    int cnt = 0;
    for(int i = l; i <= r; ++i)
    {
        if(a[i].x >= a[mid].x-d && a[i].x <= a[mid].x+d)
            temp[cnt++] = i;
    }
    sort(temp, temp+cnt, cmp2);
    for(int i = 0; i < cnt; ++i)
    {
        for(int j = i + 1; j < cnt; ++j)
        {
            if(a[temp[j]].y - a[temp[i]].y >= d)
                break;
            d = min(d,  dis(a[temp[i]], a[temp[j]]));
        }
    }
    return d;
}
int main()
{
    ios::sync_with_stdio(false);
    #ifndef ONLINE_JUDGE
    freopen("input.txt", "r", stdin);
    #endif // ONLINE_JUDGE
    int n;
    while(cin >> n)
    {
        if(n == 0) break;
        for(int i = 0; i < n; ++i)
            cin >> a[i].x >> a[i].y;
        sort(a, a+n, cmp1);
        double ans = solve(0, n-1)/2;
        ios::fixed;
        cout << fixed << setprecision(2) << ans << endl;
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页