D-Wave 最新动向曝光 AI 野心!用量子退火解锁玻尔兹曼机的终极潜力

 内容来源:量子前哨(ID:Qforepost) 

 文丨浪味仙  排版丨浪味仙

技术突破:3200字丨8分钟阅读

深度学习,被誉为人工智能的“发动机”,它依赖对大型神经网络的训练,这些网络模仿人脑的结构和决策机制,赋予了 AI 图像识别、语言理解和自动驾驶等强大能力。但要驱动这台“引擎”,需要消耗巨量算力:庞大的神经网络结构仿佛一座数据迷宫,训练它,就像试图在黑暗中凭直觉走出迷宫。

量子计算,或许正是那束照亮路径的光。尤其一种名为量子玻尔兹曼机(Quantum Boltzmann Machine, QBM)的创新架构,正在成为打破深度学习瓶颈的关键利器。

近日,D-Wave 的又一最新动向,揭示出其以量子退火机作为一种物理实现玻尔兹曼机的方式,正在积极推动专用量子计算机在人工智能领域的实际应用,并通过在工具链、硬件能力、应用场景和混合范式探索上的布局,引领量子机器学习的新趋势。

量子玻尔兹曼机 

要理解量子玻尔兹曼机(QBM),不妨三两话回顾一下它的“前身”,即玻尔兹曼机(Boltzmann Machine, BM)。

1985 年,深度学习教父 Geoffrey Hinton 提出了这一模型,它不同于只能“识别”的感知机,而是能够模仿人类的思维模式“创造”数据(生成声音、图像),并通过对比生成数据与分析数据来优化模型,用自己的方式构建世界的理解。这种能力让它成为 AI 中最贴近“思考”的模型之一。

但 BM 的潜力,常被充满巨大挑战的训练过程所束缚:训练需要不断地从复杂的玻尔兹曼分布中采样,就像反复摇骰子,以逼近现实世界的概率规律。对于大规模数据和复杂网络结构来说,这种“摇骰子”的过程既效率低又难以保证收敛,严重限制了 BM 的实际应用。

而量子玻尔兹曼机(QBM)的登场,改变了游戏规则。

QBM 巧妙地利用量子伊辛模型与 BM 数学结构的等价性,借助量子叠加与纠缠,在量子硬件(如量子退火机、相干光量子计算机 CIM)上实现高效采样,通过“量子并行”的方式加速这一核心过程,解决了经典玻尔兹曼机因高复杂度而无法高效训练的难点。

这种“量子升级”带来了三大飞跃,就像为深度学习插上了“量子翅膀”:

1、效率飞跃:不再需要反复试错,量子采样显著减少训练时间;

2、表达飞跃:可建模更复杂、更高维度的数据结构,识别隐藏更深的模式;

3、应用飞跃:在图像生成、自然语言建模等任务中表现出前所未有的潜力。

D-Wave 的 AI 雄心 

D-Wave 作为专用量子计算领域的领导者,以其量子退火技术而知名。近年来,该公司在将量子退火机应用于玻尔兹曼机方面动作频频,包括日前刚刚上线用于构建和训练玻尔兹曼机的 PyTorch 插件,可以支持 AI 社区的开发者用定义普通神经网络的方式定义量子神经网络,这表明 D-Wave 正在全方位推动其在人工智能领域的实际应用。

完善的 PyTorch 插件:

降低开发门槛

PyTorch 是一个基于 Python 的开源深度学习框架,2016 年由 Facebook 发布,能够提供灵活的动态计算图和易于使用的 API,具有易用性、灵活性和高效性等特点,是训练神经网络的核心,也是目前最广泛被使用的神经网络开发工具。

D-Wave 正致力于通过提供便捷的开发工具,让更多的机器学习开发者能够利用其量子硬件,核心举措之一便是持续开发和支持 D-Wave PyTorch Plugin(D-Wave PyTorch 插件)。

该插件包含用于构建和训练玻尔兹曼机的 PyTorch 神经网络模块,以及各种采样器实用函数,旨在为 D-Wave 的量子-经典混合求解器与流行的 PyTorch 深度学习框架之间搭建无缝桥梁。

这意味着,熟悉 PyTorch 的开发者可以直接在其熟悉的编程环境中,集成 D-Wave 的量子退火机来训练玻尔兹曼机,从而大幅降低了量子计算在机器学习领域,特别是玻尔兹曼机应用中的技术门槛。

硬件能力提升:

实现大规模量子受限玻尔兹曼机

D-Wave 持续推动在量子硬件上实现更大规模、更复杂的玻尔兹曼机模型,近期的研究成果颇为瞩目:

1、大规模量子受限玻尔兹曼机(QRBM)的实现:据 2025 年 2 月发表在 arXiv 上的论文显示,D-Wave 已成功在其 Pegasus 量子硬件上实现了包含 120 个可见单元和 120 个隐藏单元的大型量子受限玻尔兹曼机(QRBM),这一成果标志着量子退火机在处理更复杂机器学习任务方面的能力跃升。

  图源:arXiv

2、高效的数据生成与预处理:这些大型 QRBM 被证明可以作为强大的生成模型,有效解决特定领域(如入侵检测系统)中的数据集不平衡问题。研究表明,通过 D-Wave 量子退火机生成的合成样本质量更高,并且显著提升了后续分类任务的检测率、准确率、召回率和 F1 分数,甚至在毫秒级时间内完成数据平衡,充分展现了 QRBM 在数据预处理和增强方面的可扩展性和高效性。

拓展应用场景:

强化学习与生成式 AI

D-Wave 正积极探索玻尔兹曼机在更广阔 AI 领域的应用潜力:

1、强化学习中数据效率的提升:有研究表明,利用 D-Wave 量子退火机求解深度玻尔兹曼机(DBM),可以显著提高强化学习(RL)中的数据效率。当与 PPO(Proximal Policy Optimization)等经典强化学习算法结合时,量子训练的 DBM 能够实现高达两倍的数据效率提升,且不损失准确性,这为解决强化学习中“数据饥渴”问题提供了新途径。

 图源:arXiv

2、推动生成式 AI 发展:2024 年 7 月,D-Wave 发布的量子 AI 路线图明确将“为生成式 AI 开发量子分布”作为其重点方向之一,并特别提到了利用受限玻尔兹曼机(RBM)架构,这预示着 D-Wave 将持续投入资源,探索量子玻尔兹曼机在生成图像、文本等复杂数据方面的能力。

 图源:D-Wave官网

混合范式探索:

量子-经典协同增效

D-Wave 及其研究伙伴也在深入探索将量子退火 RBM 与经典深度神经网络(如卷积自编码器)相结合的混合系统。这种混合方法旨在充分利用量子退火机在采样和优化复杂能量景观方面的独特优势,同时结合经典深度学习模型在处理大规模数据和特征提取方面的强大能力,以期在量子图像压缩和生成学习等任务中实现更优异的性能。

综合 D-Wave 在玻尔兹曼机领域的种种进展,不难看出专用量子计算走向实际应用的步伐之稳健:通过完善开发工具、不断提升硬件能力以及对特定应用场景的深入探索,D-Wave 正在积极推动量子玻尔兹曼机在数据预处理、生成式 AI 和强化学习等关键领域的商业化进程。尽管挑战依然存在,但这些进展无疑为机器学习的未来发展打开了新的可能性。

Reference:

1、https://deepwiki.com/dwavesystems/dwave-pytorch-plugin/1-overview 

2、https://docs.dwavequantum.com/en/latest/index.html 

3、https://github.com/dwavesystems/dwave-pytorch-plugin

4、https://www.dwavequantum.com/company/newsroom/press-release/d-wave-announces-roadmap-to-extend-leap-quantum-cloud-service-for-ai-ml/#:~:text=The%20roadmap%20is%20intended%20to,chain%20optimization%20to%20support%20AI%2D

5、https://arxiv.org/abs/2502.03086

6、https://arxiv.org/abs/2408.17240

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值