题目描述
请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则之后不能再次进入这个格子。 例如 a b c e s f c s a d e e 这样的3 X 4 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占据了矩阵中的第一行第二个格子之后,路径不能再次进入该格子
public class Solution {
public boolean hasPath(char[] matrix, int rows, int cols, char[] str)
{
if(matrix == null || matrix.length <= 0 || rows <= 0
|| cols <= 0 || str.length <= 0 || str == null) return false;
boolean[] bl = new boolean[rows * cols];
int count = 0;
for(int i = 0; i < rows; i++){
for(int j = 0; j < cols; j++){
if(isPath(matrix, rows, cols, i, j, bl, str, count)) return true;
}
}
return false;
}
public boolean isPath(char[] matrix, int rows, int cols, int row, int col, boolean[] bl, char[] str, int count){
boolean flag = false;
if(str.length == count) return true;
if(row >= 0 && rows > row && col >= 0 && cols > col && matrix[row * cols + col] == str[count] && !bl[row * cols + col]){
count++;
bl[row * cols + col] = true;
flag = isPath(matrix, rows, cols, row + 1, col, bl, str, count) || // down
isPath(matrix, rows, cols, row - 1, col, bl, str, count) || // up
isPath(matrix, rows, cols, row, col + 1, bl, str, count) || // right
isPath(matrix, rows, cols, row, col - 1, bl, str, count); // left
if(!flag){
count--;
bl[row * cols + col] = false;
}
}
return flag;
}
}
以上就是这道题的解答。