计算机 原码 反码 与 补码详解

注:之前查找了关于原码、反码、补码的相关资料,张子秋的博客:原码, 反码, 补码 详解讲的比较透彻。为了方便,现将其转载至此,版权归原作者所有。更加深入的分析,可以参考作者的原文。

本文大部分内容来源于此。后面补充一下个人理解 。

作者:张子秋
出处:http://www.cnblogs.com/zhangziqiu/

机器数和真值

机器数

一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.

比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011 。那么,这里的 00000011 和 10000011 就是机器数。

真值

因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。

例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1

原码

原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:

[+1]原 = 0000 0001

[-1]原 = 1000 0001

第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:

[1111 1111 , 0111 1111],即:

[-127 , 127]

原码是人脑最容易理解和计算的表示方式.

反码

反码的表示方法是:正数的反码是其本身;的反码是在其原码的基础上, 符号位不变,其余各个位取反。

[+1] = [00000001]原 = [00000001]反

[-1] = [10000001]原 = [11111110]反

可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算。

补码

补码的表示方法是:正数的补码就是其本身;的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)

[+1] = [00000001]原 = [00000001]反 = [00000001]补

[-1] = [10000001]原 = [11111110]反 = [11111111]补

对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.

为何要使用原码, 反码和补码

在开始深入学习前, 我的学习建议是先”死记硬背”上面的原码, 反码和补码的表示方式以及计算方法.

现在我们知道了计算机可以有三种编码方式表示一个数. 对于正数因为三种编码方式的结果都相同:

[+1] = [00000001]原 = [00000001]反 = [00000001]补

所以不需要过多解释. 但是对于负数:

[-1] = [10000001]原 = [11111110]反 = [11111111]补

可见原码, 反码和补码是完全不同的. 既然原码才是被人脑直接识别并用于计算表示方式, 为何还会有反码和补码呢?

首先, 因为人脑可以知道第一位是符号位, 在计算的时候我们会根据符号位, 选择对真值区域的加减. (真值的概念在本文最开头). 但是对于计算机, 加减乘数已经是最基础的运算, 要设计的尽量简单. 计算机辨别”符号位”显然会让计算机的基础电路设计变得十分复杂! 于是人们想出了将符号位也参与运算的方法. 我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法, 这样计算机运算的设计就更简单了.

于是人们开始探索 将符号位参与运算, 并且只保留加法的方法. 首先来看原码。计算十进制的表达式: 1-1=0

1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2

如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.

为了解决原码做减法的问题, 出现了反码。计算十进制的表达式:

1-1=0

1 - 1 = 1 + (-1)
= [0000 0001]原 + [1000 0001]原
= [0000 0001]反 + [1111 1110]反
= [1111 1111]反 = [1000 0000]原
= -0

发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在”0”这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.

于是补码的出现, 解决了0的符号以及两个编码的问题:

1-1 = 1 + (-1)
= [0000 0001]原 + [1000 0001]原
= [0000 0001]补 + [1111 1111]补
= [0000 0000]补=[0000 0000]原

这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:

(-1) + (-127) = [1000 0001]原 + [1111 1111]原
= [1111 1111]补 + [1000 0001]补
= [1000 0000]补

-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)

使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].

因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.
下面是个人理解的注释 。

注 :在 补码 原码 反码的转换过程中 符号位 不变 。 在用补码进行加法运算的时候符号位参与运算 。

还有一个地方比较模糊 ,就是补码与反码进行转换的时候有加1 减1 操作,这时候符号位需不需元参与进位 。主要是这个特例比较难以理解,请看下文。  我想了一下其实这个问题就归根与 0 等于 + 0 ,-0 ,还是 0 = + 0  != -0 ;如果是前者 那么 推导一下 +0 = 0000 0000[原] = 0000 0000 [补码] = 0000 0000 [反码]  ;
-0 = 1000 0000[原] = 1111 1111[反] = 符号位参与进位 = [补码 = 反码+1] 0000 0000 ;  符号位不参与进位 = 1000 0000  
如果选择符位参与进位 那么就是0 = +0 = -0 ,而且对计算机来说 0 的补码就只有一种 0000 0000 ,似乎是很方便的。 

其实 -128 = -1 +(-127 )= 1000 0001 [原] + 1111 1111 [原] = 1111 1111[补]  + 1000 0001 [补] = 1000 0000[补]

所以根据原码的定义 ,-128是没有定义的,不存在原码与反码 但它存在补码 ,-128补码是根据补码运算得出来的,

也刚好补码1000 0000没有被其他数占用,也就可以用来表示-128 。 就是 256 个二进制补码就只有 1000 0000 没有对应的十进制数表示(实际是表示-128) 。 当然我们可以就记住这个特例 。 

也就是1000 0000[补码]不存在原码和反码 。-128在计算机中的补码表示其实是由补码的运算规则得出来的,并不是由原码, 补码之间转换出来的 。

/**假装注释一下以下内容 ,因为这第二种思想我也不知道实际上对不对 ,有同样困惑的想看的同学可以看,但可能会更加困惑//因为感觉第一种解释已经很好理解了,看了第二种可能会更加困惑 。伤脑细胞 。**/                                                                                                                                                                                                                
那么如果一定要将 [补码]1000 0000 转换为原码呢?首先反码 : 0111 1111   ,原码 : 0000 0000 ,这时候尴尬的事情发生了 。你发现 补码1000 0000 求原码 变成 了 0000 0000 ,为正零 。而正零的补码却还是 000 0000 。问题出在哪呢 ,其实就是出在 1000 0000 变为反码 时减一 符号位参与运算不 ,参与的话 符号位就会改变了 。所以这样分析的话,我认为 符号位是不应该参与补码 ,反码 转换运算的  。不参与运算 1000 0000 转换为反码 为: 1111 1111  ,原码 : 1000 0000  就是 -0。这个时候理解为-128 是借用了 -0 的补码 。

综上所诉 ,关于 符号位是否参与补码 反码 转换运算的 两种理解 。
 

如果理解为 符号位参与 补码 反码转换运算 ,那么0 =  + 0 = -0 ,其补码只有一种 0000 0000 ,补码 1000 0000 不存在原码和反码 。补码 1000 0000 的来源 可以理解为 -1 + (-127 )=   1000 0001 [原] + 1111 1111 [原] = 1111 1111[补]  + 1000 0001 [补] = 1000 0000[补] = -128  。不是由原码 转换而来 ,由补码运算规则而来,也恰好 1000 0000 没有被其他数占用 。

如果 理解符号位不参与进位 ,那么 0 = +0  != -0 ,-0 补码借用给 -128 。 即1000 0000[补] 存在反码和原码 为 -0 的反码和原码 。

哎呀 ,还是忍不住说一句,虽然感觉两种解释都好有道理的样子(可能是我理解错了,欢迎大家指正,人总是发现不了自己的思想上的bug呀),但还是在写着写着的过程中就倾向于第一种理解了 。欢迎私信讨论啊 ~~~ 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值