题目描述:
请编写一个递归函数,用来输出n个元素的所有子集。例如,三个元素{a,b,c}的所有子集是:{},{a},{b},{c},{a,c},{ac},{b,c},{a,b,c}.
解题思路:
根据子集的定义,集合中的每一个元素在子集中都有两种状态:‘1’表示出现,'0'表示不出现;如果所有的元素都不出现,则该子集是空集,如果所有的元素都出现,则该子集是全集。
我们定义一个标记数组tag,用于记录集合中对应的元素是否出现,每层遍历对应集合中的每个元素,都有出现(为‘1’)和不出现(为‘0’)两种可能,一直遍历到所有的元素的可能都标记完,然后根据数组函数输出结果。
程序代码:
#include <iostream>
using namespace std;
void build(char *str,int *tag,int n)
{
if(n==5)
{
cout<<"{";
for(int i=0;i<5;i++)
if(tag[i]==1)
cout<<str[i];
cout<<"}"<<endl;
return;
}
tag[n] = 0;
build(str,tag,n+1);
tag[n] = 1;
build(str,tag,n+1);
}
int main()
{
char a[5]={'a','b','c','d','e'};
int tag[5];
build(a,tag,0);
return 0;
}
输出结果:
{}
{e}
{d}
{de}
{c}
{ce}
{cd}
{cde}
{b}
{be}
{bd}
{bde}
{bc}
{bce}
{bcd}
{bcde}
{a}
{ae}
{ad}
{ade}
{ac}
{ace}
{acd}
{acde}
{ab}
{abe}
{abd}
{abde}
{abc}
{abce}
{abcd}
{abcde}
一共有2^5 = 32个子集。
这是《数据结构与算法应用》中的一道课后题,看了作者的标准答案:http://www.mhhe.com/engcs/compsci/sahni/c1/E5.HTM
发现和我的思路是一样的,哈哈,英雄所见略同~