大数据时代的利与弊

大数据时代带来了预测能力和相关性分析的提升,如健康码和谷歌流感趋势等应用,但同时也存在数据冗余、隐私泄露等问题。大数据预测能转化复杂预测为简单描述,但相关性不等于因果关系。大数据的滥用可能导致信息冗余和隐私侵犯,需要理性判断与隐私保护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大数据时代的利与弊

大数据时代的到来可以说是社会发展的必然结果,是时代进步的产物,给人们的生活和工作带来了诸多的便利,例如近日频频使用的健康码无疑就是大数据应用案例的典型之一。大数据使我们的生活变得更加高效、精准,但凡事都有两面性,从长远来看,大数据在为生产生活带来便利的同时,也让人不禁担心是否会存在信息安全隐患。

一:大数据的“利”
预测从古至今,预测能力都是人们所向往的能力之一,而大数据预测则是大数据最核心的应用。当今的大数据预测,就是对现已记录的历史数据进行分析利用,结合数学模型,预测未来从而推断出结果。大数据预测的优势体现在它把一个非常困难的预测问题,转化为一个相对简单的描述问题,而这是传统小数据集根本无法企及的。大数据预测将传统意义上的“预测”拓展成为“现测”。

相关性
有人可能会问,有了大数据预测,是不是就能高枕无忧了?答案是否定的,能够引导人们做出决策的关键环节其实是在于能在大数据中提炼出“相关性”。谷歌开发的名为“谷歌流感趋势”的工具,通过跟踪搜索关键词频率来判断全美地区的流感情况,当关键词(如温度计、流感症状、肌肉疼痛、胸闷等)搜索率飙升时,工具便会发出预警。由此可见大数据分析,能够令看似不相干的事物相关性浮出水面。事实往往是复杂的,大数据的相关性并不意味着两个事件具有因果联系,而具有因果联系的两件事从大数据本身来看有时也并不相关。大数据时代,我们无需考虑现象背后的本质,只要发现相关性,就可以加速决策,创造巨大的经济或社会价值。

二:大数据的“弊”
冗杂度高不可否认,大数据在数据记录、数据异常比较等方面具有很大的优势,比如打击刷单行为,但是,大数据并不是万能的,也存在很多局限性,大数据记录太多数据,不一定都是需要的,有时重要的信息只占很低比例,这就是质量低、利用效率低。一旦只一味迷信大数据而没有认真地去分析和判断,往往把错误地把偶然现象当作规律来处理,这时如果投入分配大量的资源,教训就会接踵而至,所以有时我们也需要理性的判断,不能一味迷信。

隐私性
在大数据时代,用户会偶然发现自己的隐私收到威胁的经历,购物监视我们的购物习惯,搜索引擎监视我们的网页浏览记录,社交软件监视我们的社交关系,理财产品监视我们的财富,一旦数据泄露将产生不可预知的后果,有时大数据与隐私用户不可兼顾。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值