/*
Name: 素数环
Copyright:
Author:
Date: 10-07-17 20:41
Description: 素数环
时间限制:1000 ms | 内存限制:65535 KB
难度:2
描述
有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环。
为了简便起见,我们规定每个素数环都从1开始。例如,下图就是6的一个素数环。
输入
有多组测试数据,每组输入一个n(0<n<20),n=0表示输入结束。
输出
每组第一行输出对应的Case序号,从1开始。
如果存在满足题意叙述的素数环,从小到大输出。
否则输出No Answer。
样例输入
6
8
3
0
样例输出
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Case 3:
No Answer
*/
#include<iostream>
#include<cmath>
using namespace std;
const int N = 8; //环节点的个数
int c[N+1];//记录环节点的值
bool b[N+1]; //b[j]==0表示数字j可用
int sum = 0;//保存可以放置的方案数
bool Prime(int n); //判断是否为素数
void Print();
void DFS(int t); //递归回溯,t表示第t个节点
int main()
{
for (int i=1; i<=1; i++) //因为每个节点都是等价的,故可命c[1] = 1,否则将造成重复
{
c[1] = i; //设置第一个节点的值
b[i] = 1; //数字i已经被使用
DFS(2); //递归处理下一个节点
b[i] = 0; //数字i还原
}
return 0;
}
void DFS(int t) //递归回溯,t表示第t个节点
{
for (int i=1; i<=N; i++)
{
if ((!b[i]) && Prime(c[t-1]+i))
{
c[t] = i; //设置第一个节点的值
b[i] = 1; //数字i已经被使用
if (t == N) //最后一个节点,要与节点1结对处理
{
if (Prime(c[t]+c[1]))
Print();
}
else
{
DFS(t+1); //递归处理下一个节点
}
b[i] = 0; //数字i还原
}
}
}
bool Prime(int n) //判断是否为素数
{
for (int i=sqrt(n); i>1; i--)
{
if (n%i == 0)
return false;
}
return true;
}
void Print()
{
cout << "方案" << ++sum << ": ";
for(int i=1; i<=N; i++)
{
cout << c[i] << " ";
}
cout << endl;
}
/*
Name: 素数环
Copyright:
Author:
Date: 10-07-17 20:41
Description: 素数环
时间限制:1000 ms | 内存限制:65535 KB
难度:2
描述
有一个整数n,把从1到n的数字无重复的排列成环,且使每相邻两个数(包括首尾)的和都为素数,称为素数环。
为了简便起见,我们规定每个素数环都从1开始。例如,下图就是6的一个素数环。
输入
有多组测试数据,每组输入一个n(0<n<20),n=0表示输入结束。
输出
每组第一行输出对应的Case序号,从1开始。
如果存在满足题意叙述的素数环,从小到大输出。
否则输出No Answer。
样例输入
6
8
3
0
样例输出
Case 1:
1 4 3 2 5 6
1 6 5 2 3 4
Case 2:
1 2 3 8 5 6 7 4
1 2 5 8 3 4 7 6
1 4 7 6 5 8 3 2
1 6 7 4 3 8 5 2
Case 3:
No Answer
算法思想 :
素数环:给定n,1~n组成一个素数环,相邻两个数的和为素数。
首先偶数(2例外,但是本题不会出现两个数的和为2)不是素数,
所以素数环里奇偶间隔。如果n是奇数,必定有两个奇数相邻的情况。
所以当n为奇数时,输出“No Answer”。
当n == 1时只1个数,算作自环,输出1
所有n为偶数的情况都能变成奇偶间隔的环-----所以都有结果。
因为n的值比较小,我们可以使用打表的方法用数组prime记录前40个数字是否为素数,这样可以快速判断相邻两个数之和是否为素数。
基本思想是回溯,但是要注意第一个节点直接设置为数字1,最后一个节点,要与节点1结对处理。
*/
#include<iostream>
#include<cstdio>
using namespace std;
int prime[41]={0,0,1,1,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,1,0,1,0,0,0,0,0,1,0,0,0};//打表0-40是否为素数
const int N = 20;
int c[N+1];//记录环节点的值
bool b[N+1]; //b[j]==0表示数字j可用
int sum = 0;//保存可以放置的方案数
int n; //环节点的个数
void Print();
void DFS(int t); //递归回溯,t表示第t个节点
int main()
{
scanf("%d", &n);
while (n != 0)
{
if (n % 2 == 0)
{
sum = 0;//保存可以放置的方案数
c[1] = 1; //因为每个节点都是等价的,故可命c[1] = 1,否则将造成重复
b[1] = 1; //数字1已经被使用
DFS(2); //从第2个节点开始,递归处理下一个节点
}
else
{
cout << "No Answer" << endl;
}
scanf("%d", &n);
}
return 0;
}
void DFS(int t) //递归回溯,t表示第t个节点
{
for (int i=2; i<=n; i++)//因为第一个节点取数字1,故后面的节点不能再取数字1
{
if ((!b[i]) && prime[c[t-1]+i])
{
c[t] = i; //设置第一个节点的值
b[i] = 1; //数字i已经被使用
if (t == n) //最后一个节点,要与节点1结对处理
{
if (prime[c[t]+c[1]])
Print();
}
else
{
DFS(t+1); //递归处理下一个节点
}
b[i] = 0; //数字i还原
}
}
}
void Print()
{
cout << "Case " << ++sum << ": ";
for(int i=1; i<=n; i++)
{
cout << c[i] << " ";
}
cout << endl;
}