/*
Name: 4977_怪盗基德的滑翔翼
Copyright:
Author:
Date: 09-08-17 09:25
Description: 4977_怪盗基德的滑翔翼
查看 提交 统计 提问
总时间限制: 1000ms 内存限制: 65536kB
描述
怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,
而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
输入
输入数据第一行是一个整数K(K < 100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N < 100),代表有N幢建筑。
第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0 < h < 10000),按照建筑的排列顺序给出。
输出
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
样例输入
3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10
样例输出
6
6
9
*/
#include<iostream>
#include<cstring>
using namespace std;
const int MAX = 101;
int A[MAX];
int S2[MAX]; //记录到元素i为止的最长上升子序列的长度
int DP_2(int n); //顺序处理
int main()
{
int t, n;
cin >> t;
for (int k=0; k<t; k++)
{
cin >> n;
for (int i=0; i<n; i++)
{
cin >> A[i];
}
memset(S2, 0, sizeof(S2));
cout << DP_2(n) << endl;//顺序处理,需要用到全局变量A[MAX],另有S2[MAX]初始化为0。
}
return 0;
}
int DP_2(int n) //顺序搜索
{
int maxLen = 0; //记录最长上升子序列的长度
for (int i=0; i<n; i++)
{
for (int j=i-1; j>=0; j--)//逆序查找不大于A[i],且最长的元素,找到后更新S[i]的值
{
if (A[i] > A[j] && S2[j] > S2[i])
S2[i] = S2[j];
}
S2[i]++; //因为S[i]初始化为0,故长度应增1
if (maxLen < S2[i])
maxLen = S2[i];
}
if (maxLen < n / 2)//长度不到一半,再看递减能否取得更大值
{
memset(S2, 0, sizeof(S2));
for (int i=0; i<n; i++)
{
for (int j=i-1; j>=0; j--)//逆序查找不小于A[i],且最长的元素,找到后更新S[i]的值
{
if (A[i] < A[j] && S2[j] > S2[i])
S2[i] = S2[j];
}
S2[i]++; //因为S[i]初始化为0,故长度应增1
if (maxLen < S2[i])
maxLen = S2[i];
}
}
return maxLen;
}
/*
Name: 4977_怪盗基德的滑翔翼
Copyright:
Author:
Date: 09-08-17 09:25
Description: 4977_怪盗基德的滑翔翼
查看 提交 统计 提问
总时间限制: 1000ms 内存限制: 65536kB
描述
怪盗基德是一个充满传奇色彩的怪盗,专门以珠宝为目标的超级盗窃犯。而他最为突出的地方,就是他每次都能逃脱中村警部的重重围堵,
而这也很大程度上是多亏了他随身携带的便于操作的滑翔翼。
有一天,怪盗基德像往常一样偷走了一颗珍贵的钻石,不料却被柯南小朋友识破了伪装,而他的滑翔翼的动力装置也被柯南踢出的足球破坏了。
不得已,怪盗基德只能操作受损的滑翔翼逃脱。
假设城市中一共有N幢建筑排成一条线,每幢建筑的高度各不相同。初始时,怪盗基德可以在任何一幢建筑的顶端。
他可以选择一个方向逃跑,但是不能中途改变方向(因为中森警部会在后面追击)。
因为滑翔翼动力装置受损,他只能往下滑行(即:只能从较高的建筑滑翔到较低的建筑)。
他希望尽可能多地经过不同建筑的顶部,这样可以减缓下降时的冲击力,减少受伤的可能性。
请问,他最多可以经过多少幢不同建筑的顶部(包含初始时的建筑)?
输入
输入数据第一行是一个整数K(K < 100),代表有K组测试数据。
每组测试数据包含两行:第一行是一个整数N(N < 100),代表有N幢建筑。
第二行包含N个不同的整数,每一个对应一幢建筑的高度h(0 < h < 10000),按照建筑的排列顺序给出。
输出
对于每一组测试数据,输出一行,包含一个整数,代表怪盗基德最多可以经过的建筑数量。
样例输入
3
8
300 207 155 299 298 170 158 65
8
65 158 170 298 299 155 207 300
10
2 1 3 4 5 6 7 8 9 10
样例输出
6
6
9
*/
#include<iostream>
#include<cstring>
using namespace std;
const int MAX = 101;
int A[MAX];
int S3[MAX+1]; //记录最长上升子序列,下标从1开始
int DP_3(int n); //顺序处理,二分插入
int Pos(int low, int high, int x);//二分查找,返回第一个比x大的元素下标
int main()
{
int t, n;
cin >> t;
for (int k=0; k<t; k++)
{
cin >> n;
for (int i=0; i<n; i++)
{
cin >> A[i];
}
memset(S3, 0, sizeof(S3));
cout << DP_3(n) << endl;//顺序处理,需要用到全局变量A[MAX],另有S2[MAX]初始化为0。
}
return 0;
}
int DP_3(int n) //顺序搜索,二分插入
{
int m1 = 0, m2 = 0; //记录最长不下降子序列的长度
S3[++m1] = A[0]; //S3下标从1开始
for (int i=1; i<n; i++)
{
if (A[i] > S3[m1])//直接接在后面并使子序列长度增1
{
S3[++m1] = A[i];
}
else //二分查找,并插入到适当位置(第一个比A[i]大的元素)
{
S3[Pos(1, m1-1, A[i])] = A[i];
}
}
if (m1 < n / 2)//长度不到一半,再看递减能否取得更大值
{
S3[++m2] = A[n-1]; //S3下标从1开始
for (int i=n-2; i>=0; i--)
{
if (A[i] > S3[m2])//直接接在后面并使子序列长度增1
{
S3[++m2] = A[i];
}
else //二分查找,并插入到适当位置(第一个比A[i]大的元素)
{
S3[Pos(1, m2-1, A[i])] = A[i];
}
}
}
return max(m1, m2);
}
int Pos(int low, int high, int x)//二分查找,返回第一个比x大的元素下标
{
int mid;
while (low <= high)
{
mid = (low + high)/2;
if (S3[mid] > x)
{
high = mid - 1;
}
else
{
low = mid + 1;
}
}
return low;//此时S3[low] > x
}