# -*- coding=UTF-8 -*-
'''
题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,
请问该数是多少?
'''
import math
#方法一:直接穷举
def IsSqure(n): #判断是否为完全平方数
return math.sqrt(n) % 1 == 0
print('方法一:直接穷举')
x = -100
while x <= 1000000:
if IsSqure(x+100) and IsSqure(x+268):
print(x, end=' ')
x += 1
#方法二:先解析,再穷举
'''
假设该数为 x。
1、则:x + 100 = n^2, x + 100 + 168 = m^2
2、计算等式:m^2 - n^2 = (m + n)(m - n) = 168
3、设置: m + n = i,m - n = j,i * j =168,i 和 j 至少一个是偶数
4、可得: m = (i + j) / 2, n = (i - j) / 2,i 和 j 要么都是偶数,要么都是奇数。
5、从 3 和 4 推导可知道,i 与 j 均是大于等于 2 的偶数。
6、由于 i * j = 168, j>=2,且i > j,则 13 < i < 168 / 2 + 1。
7、接下来将 i 的所有数字循环计算即可。
'''
print('\n方法二:先解析,再穷举')
for i in range(14,85,2):
if 168 % i == 0:
j = 168 / i;
if j % 2 == 0:
n = (i - j) / 2
x = int(n ** 2 - 100)
print(x, end=' ')
#方法三:先解析,再穷举
'''
设该数为x:x + 100 = n^2, n^2 + 168 = m^2。
设m=n+k(不妨设m,n,k均为自然数):带入m^2-n^2=168,得k^2+2nk=168。
解得n=84/k - k/2;由于n,k均为自然数,则nk>=1,故1< =k^2<=166,故1<=k<=12。
'''
print('\n方法三:先解析,再穷举')
for k in range(1,13):
n = 84/k - k/2
if int(n) == n:
x = int(n ** 2 - 100)
print(x, end=' ')
#方法四:利用集合运算
'''
设该数为x:x + 100 = n^2, n^2 + 168 = m^2。易知m和n的上限是168
设x1为n^2-100的合集,x2为m^2-100-168的合集,两个合集求交集结果就是所求的解集合
'''
print('\n方法四:利用集合运算')
x1 = map(lambda i: i**2-100, range(169))
x2 = map(lambda i: i**2-100-168, range(169))
print(set(list(x1)) & set(list(x2)))