动态规划专题之石子合并

动态规划专题讲义

专题九:合并石子问题
/*
	Name: 动态规划专题之石子合并
	Author: 巧若拙 
	Description: 
在一个操场上摆放着一排N堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
试设计一个算法,计算出将N堆石子合并成一堆的最小得分。
输入描述 Input Description
第一行是一个数N。1≤N≤100
以下N行每行一个数A,表示石子数目。1≤A≤200
输出描述 Output Description
共一个数,即N堆石子合并成一堆的最小得分。
样例输入 Sample Input
7
13 7 8 16 21 4 18
样例输出 Sample Output
239
*/
#include<iostream>

using namespace std;

const int INT_MAX = 2147483647;
const int MAX = 1000;

int A[MAX+1];//记录每堆石子的数量 
int Sum[MAX+1];//记录前n堆石子的数量 
int B[MAX+1][MAX+1];//记录第i堆石子至第j堆石子的最优解
int S[MAX+1][MAX+1];//记录从哪里断开的才可得到最优解
bool flag[MAX+1]; //记录A[i]是否已经被输出过 

int StonesCombined(int i, int j);//自顶向下,使用备忘录数组的动态规划算法  
int StonesCombined_2(int n);//自底向上的动态规划算法:递增括号中石子堆数量 
int StonesCombined_3(int n);//自底向上的动态规划算法:逆序扫描  
int StonesCombined_4(int n);//自底向上的动态规划算法:顺序扫描  
void Traceback(int i, int j);//根据s[][]记录的各个子段的最优解,将其输出

int main()
{
	int n = 0;
	cin >> n;
	for (int i=1; i<=n; i++)
	{
		cin >> A[i];
		Sum[i] = Sum[i-1] + A[i];
	}
		
  // cout << StonesCombined(1, n) << endl;//自顶向下,使用备忘录数组的动态规划算法 
    cout << StonesCombined_2(n) << endl;//自底向上的动态规划算法 
    Traceback(1, n);
    cout << endl;
    
    return 0;
}

算法1:自顶向下,使用备忘录数组的动态规划算法,需要用到全局变量S[MAX+1][], 另有B[MAX+1][]初始化为0。
int StonesCombined(int i, int j) 
{
 	if (B[i][j] != 0)  
        return   //语句1
	if (i == j)
		return   //语句2
	int t, m = INT_MAX;
	for (int k=i; k<j; k++)
	{
	 	t = StonesCombined(i, k) + StonesCombined(k+1, j) + Sum[j] - Sum[i-1];
	 	if (t < m)
	 	{
	        m = t;
	        S[i][j] = k;  //记录从哪里断开的才可得到最优解
        }
	} 
	return B[i][j] = m;
}
问题1:将语句1和语句2补充完整。

参考答案: 
问题1:语句1:return B[i][j];
        语句2:return 0;

算法2:自底向上的动态规划算法:递增括号中石子堆数量,需要用到全局变量S[MAX+1][], 另有B[MAX+1][]初始化为0。
int StonesCombined_2(int n)  
{
	for (int len=2; len<=n; len++) //语句1
	{
	 	for (int i=1; i<=n-len+1; i++)  //左边界
	 	{
		 	int j =   //语句2
		 	int t, m = INT_MAX;
		 	for (int k=i; k<j; k++) 
			{
			 	t = B[i][k] + B[k+1][j] + Sum[j] - Sum[i-1];
			 	if (t < m)
			 	{
			        m = t;
			        S[i][j] = k;
		        }
			} 
			B[i][j] = m;
		}
	}
	
	return B[1][n];
}
问题1:语句1能否改为:for (int len=n; len>=2; len--) ?为什么?
问题2:将语句2补充完整。

参考答案: 
问题1:不能。len代表当前被合并在一起的石子堆的数量,算法的思想是先计算所有相邻的2堆石子合并在一起的解,再计算所有所有相邻的3堆石子合并在一起的解,逐步扩大子问题的规模。在计算较大规模的问题时,可以调用较小规模子问题的解。所以len必须从小到大。
问题2:语句2:int j = i + len - 1; //右边界

算法3:自底向上的动态规划算法:逆序扫描,需要用到全局变量S[MAX+1][], 另有B[MAX+1][]初始化为0。
int StonesCombined_3(int n)  
{
	for (int i=n-1; i>0; i--)  
	{
	 	for (int j=i+1; j<=n; j++)// 语句1 
	 	{
		 	int t, m = INT_MAX;
		 	for (int k=i; k<j; k++) // 语句2
			{
			 	t = B[i][k] + B[k+1][j] + Sum[j] - Sum[i-1];
			 	if (t < m)
			 	{
			        m = t;
			        S[i][j] = k;
		        }
			} 
			B[i][j] = m;
		}
	}
	
	return B[1][n];
}
问题1:语句1能否改为:for (int j=n; j>i; j--)?为什么?
问题2:语句2能否改为:for (int k=j-1; k>=i; k--)?为什么?

参考答案: 
问题1:不能。i和j分别代表当前被合并石子堆的左,右边界,算法3的基本思想是在确定左边界的情况下,逐步扩大子问题的右边界。在计算较大规模的问题时,可以调用较小规模子问题的解。所以j必须递增。
问题2:可以。k代表分隔石子堆的位置(即把[i,k]和[k+1,j]两堆石子合并成[i,j]一堆石子),只要满足i<=k<j,k递增或递减均可。

算法4:自底向上的动态规划算法:顺序扫描,需要用到全局变量S[MAX+1][], 另有B[MAX+1][]初始化为0。
int StonesCombined_4(int n)  
{
	for (int j=2; j<=n; j++)  
	{
	 	for (int i=j-1; i>0; i--)// 语句1 
	 	{
		 	int t, m = INT_MAX;
		 	for (int k=i; k<j; k++)  
			{
			 	t = B[i][k] + B[k+1][j] + Sum[j] - Sum[i-1];
			 	if (t < m)
			 	{
			        m = t;
			        S[i][j] = k;
		        }
			} 
			B[i][j] = m;
		}
	}
	
	return B[1][n];
}
问题1:语句1能否改为:for (int i=1; i<j; i++)?为什么? 

参考答案: 
问题1:不能。i和j分别代表当前被合并石子堆的左,右边界,算法4和算法3的思路刚好相反,它是在确定右边界的情况下,逐步扩大子问题的左边界,所以i必须递减。

拓展练习:原题只要求输出最优解,并未要求输出具体的合并方法。
但是我们在上述算法中引入了一个二维数组S[][]记录k的值,即从哪里分开石子堆才能得到最优解。现在请你根据S[][]记录的信息,设计一个递归函数void Traceback(int i,int j);// i和j分别代表当前被合并石子堆的左,右边界。
请用括号把合并在一起的石子堆括起来,输出最终合并情形。
例如:对于题目给出的样例:13 7 8 16 21 4 18,则输出:(((13 (7 8))16)(21 (4 18)))

参考答案:
void Traceback(int i,int j)//根据s[][]记录的各个子段的最优解,将其输出
{
    if (i == j)
	   return ;
    
    cout << "(";
    Traceback(i, S[i][j]);
    if (flag[i] == 0)
    {
        cout << A[i] << " ";
        flag[i] = 1;
    }
    Traceback(S[i][j]+1, j);
    if (flag[j] == 0)
    {
        cout << A[j];
        flag[j] = 1;
    }
    cout << ")";
}

课后练习:
练习1: 3546_矩阵链乘法
描述:给定有n个要相乘的矩阵构成的序列(链)<A1,A2,A3,.......,An>,要计算乘积A1A2.....An。一组矩阵是加全部括号的。
矩阵链加括号对运算的性能有很大影响。
仅当两个矩阵A和B相容(即A的列数等于B的行数),才可以进行相乘运算。如果A是一个p×q矩阵,B是q×r矩阵,结果C是p×r的矩阵。
计算C的时间由乘法运算次数决定的,次数为p×q×r。
矩阵链乘法问题可表述为:给定n个矩阵构成的一个链<A1,A2,A3.......,An>,其中i=1,2,3,4.....,n,矩阵Ai的维数为Pi-1 ×Pi,
对乘积A1A2A3.....An,以一种最小标量乘法次数的方式进行加全部括号。
输入描述 Input Description
如果有n个数组,则第一行输入n+1个整数值
输出描述 Output Description
所有的数组以一种最小标量乘法次数的方式进行加全部括号。
样例输入 Sample Input
1 2 3 4 
样例输出 Sample Output
((A1A2)A3)



  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值