- 博客(3)
- 收藏
- 关注
原创 Python: K-Means聚类,肘部法则+轮廓系数确定最佳K值
轮廓系数(Silhouette Coefficient)是一种用于评估聚类效果的指标,它结合了簇内凝聚度和簇间分离度来衡量每个样本点与所属簇的匹配程度,以及与其他簇的分离程度。轮廓系数的取值范围是 [−1,1],值越接近 1 表示聚类效果越好,值接近 -1 表示样本点可能被错误地分配到了其他簇,值接近 0 表示样本点位于两个簇的边界上。这个点通常被认为是最佳的 K 值,因为在该点之前,增加 K 值能显著降低惯性,而在该点之后,增加 K 值对惯性的改善效果不明显,同时还会增加模型的复杂度和计算成本。
2025-05-09 00:00:30
332
原创 Rstudio多变量相关性分析
type参数设置为"pearson"表示计算皮尔森相关性,也可以设置为"spearman"计算斯皮尔曼相关性。数据中不能有缺失值,否则会报错。# 将数据框转换为矩阵,因为rcorr()函数需要矩阵作为输入。data_matrix
2024-12-04 21:57:00
403
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人