题目:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
算法:
不难发现,这个问题可以被分解为一些包含最优子结构的子问题,即它的最优解可以从其子问题的最优解来有效地构建,我们可以使用动态规划来解决这一问题。
第 i 阶可以由以下两种方法得到:
在第 (i-1)(i−1) 阶后向上爬一阶。
在第 (i-2)(i−2) 阶后向上爬 22 阶。
所以到达第 i 阶的方法总数就是到第(i−1) 阶和第(i−2) 阶的方法数之和。
令 dp[i] 表示能到达第 i 阶的方法总数:dp[i]=dp[i-1]+dp[i-2]
解法:
class Solution {
public int climbStairs(int n) {
if(n==1)
return 1;
int df[]=new int[n+1];
df[1]=1;
df[2]=2;
for(int i=3;i<=n;i++){
df[i]=df[i-1]+df[i-2];
}
return df[n];
}
}