论文作者:Yini Li,Nantheera Anantrasirichai
作者单位:University of Bristol
论文链接:http://arxiv.org/abs/2503.11175v1
内容简介:
1)方向:零样本学习
2)应用:低光照和水下视频的可视化增强
3)背景:低光照和水下视频常常面临较差的可视性、低对比度和高噪声问题。现有的增强方法通常依赖成对的真实数据,这限制了其实际应用并可能导致时间一致性问题。
4)方法:本文提出了一种新的零样本学习方法Zero-TIG,旨在解决低光照和水下视频的可视化增强问题。该方法结合了Retinex理论和光流技术,具有低光照视频增强、去噪和时间一致性保持的能力。具体来说,Zero-TIG网络由两个主要模块组成:增强模块和时间反馈模块。增强模块包括三个子网络:低光照图像去噪、照明估计和反射去噪。时间反馈模块通过直方图均衡、光流计算和图像变形技术,确保了视频帧之间的时间一致性。此外,该方法通过自适应平衡RGB通道来解决水下数据的颜色失真问题。
5)结果:实验结果表明,Zero-TIG方法在无需成对训练数据的情况下,能够有效地增强低光照视频,保持时间一致性,并解决水下视频的颜色失真问题,证明其在真实场景中的应用潜力。