论文作者:Hyun-Ho Choi,Kangsoo Kim,Ki-Ho Lee,Kisong Lee
作者单位:Hankyong National University;University of Calgary;Chung-Ang University;Dongguk University;
论文链接:http://arxiv.org/abs/2504.03052v1
内容简介:
1)方向:三维人体姿态估计
2)应用:三维人体姿态估计
3)背景:在动态和资源受限的环境中,实时三维人体姿态估计面临计算复杂度高、数据处理困难等挑战。为了提高估计的准确性并满足通信与计算的限制,亟需提出一种高效的推理方法。
4)方法:本研究提出了一种新型的协同推理方法,用于在移动边缘计算(MEC)网络中实现实时三维(3D)人体姿态估计,旨在解决在资源受限和动态环境下,因计算复杂度高导致的实时三维姿态估计难题。该方法通过多个轻量级推理模型的终端设备,采用双重置信度阈值过滤模糊图像,只有通过过滤的图像才会被上传至更强大的边缘服务器进行重新评估,从而在计算和通信限制下提高姿态估计的准确性。此外,还进行了数值分析,并提出了一个联合优化问题,旨在最小化每个关节位置误差(MPJPE),同时满足端到端延迟约束。
5)结果:实验结果表明,在置信度阈值的选择上,MPJPE与端到端延迟之间存在权衡关系。通过优化选择置信度阈值和传输时间,该协同推理方法显著降低了MPJPE,同时在各种MEC环境下始终满足端到端延迟要求。