最近要在服务器上跑一个别人的程序,按照他的requirement.txt配置conda环境结果程序报错了。发现是txt里给的pytorch版本和cuda版本不匹配,专门记录一下正确的安装顺序。
遇到的情境背景
服务器,已经有cuda 11.7,我直接pip install -r requirement.txt
。里面的torch是1.7.x的,安装过程没报错,但是程序运行的时候出现
ImportError: libcudnn.so.8: cannot open shared object file: No such file or directory
查了一下发现没装cudnn。于是去nvidia官网下载。官网下载都是根据cuda的版本选择的,我就选择了最新的8.9.x.x,cuda 11.x版的。
装完之后还是报上面的错。在python里
import torch
print(torch.version)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
发现print出来的cuda版本是10.2,cudnn版本是7.x.x.x。于是从头装,配一个和我cuda匹配的环境。
如果你还没有安装cuda,可以先安装cuda
1、cuda版本选择
在终端中输入
nvidia-smi
会显示显卡信息。这里会显示一个cuda版本,是你现在显卡驱动能支持的最高的cuda版本,所以安装的时候选择的版本不能高于这个版本。如果要配的环境需要的cuda版本比这里显示的高,可以尝试更新显卡驱动,这样支持的cuda版本可能会变高。
如果已经安装了cuda,在终端中查看版本:
nvcc -V
2、pytorch和cudnn版本选择
正常来说装完cuda应该先装cudnn,但cudnn的版本太多了,不知道选哪个。如果只是根据cuda版本选的话,在后续装pytorch后我出现了warning cudnn mismatch
(虽然没有报错)。
因此我认为可以先装pytorch,再根据pytorch对应的cudnn版本装cudnn。
pytorch的话就直接根据cuda版本和代码需要在官网上用官方的安装语句安装就好。安装完成后,在python中
import torch
print(torch.version)
print(torch.version.cuda)
print(torch.backends.cudnn.version())
这个时候会出来一个cudnn版本,然后再根据print出来的版本号去官网下载对应的cudnn。
p.s.如果print出来是8500,那就下载8.5.0.0版本