关于cuda、cudnn、pytorch对应版本的选择以及安装顺序踩坑

文章讲述了在服务器上配置PyTorch环境时遇到的问题,涉及到conda环境的管理,发现pytorch和cuda、cudnn版本不匹配。作者建议先确保cuda版本与显卡驱动兼容,然后选择与pytorch版本匹配的cudnn进行安装,提供了解决步骤和版本确认方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近要在服务器上跑一个别人的程序,按照他的requirement.txt配置conda环境结果程序报错了。发现是txt里给的pytorch版本和cuda版本不匹配,专门记录一下正确的安装顺序。

遇到的情境背景

服务器,已经有cuda 11.7,我直接pip install -r requirement.txt。里面的torch是1.7.x的,安装过程没报错,但是程序运行的时候出现

ImportError: libcudnn.so.8: cannot open shared object file: No such file or directory

查了一下发现没装cudnn。于是去nvidia官网下载。官网下载都是根据cuda的版本选择的,我就选择了最新的8.9.x.x,cuda 11.x版的。
装完之后还是报上面的错。在python里

import torch
print(torch.version)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

发现print出来的cuda版本是10.2,cudnn版本是7.x.x.x。于是从头装,配一个和我cuda匹配的环境。

如果你还没有安装cuda,可以先安装cuda

1、cuda版本选择

在终端中输入

nvidia-smi

会显示显卡信息。这里会显示一个cuda版本,是你现在显卡驱动能支持的最高的cuda版本,所以安装的时候选择的版本不能高于这个版本。如果要配的环境需要的cuda版本比这里显示的高,可以尝试更新显卡驱动,这样支持的cuda版本可能会变高。

如果已经安装了cuda,在终端中查看版本:

nvcc -V

2、pytorch和cudnn版本选择

正常来说装完cuda应该先装cudnn,但cudnn的版本太多了,不知道选哪个。如果只是根据cuda版本选的话,在后续装pytorch后我出现了warning cudnn mismatch(虽然没有报错)。

因此我认为可以先装pytorch,再根据pytorch对应的cudnn版本装cudnn。

pytorch的话就直接根据cuda版本和代码需要在官网上用官方的安装语句安装就好。安装完成后,在python中

import torch
print(torch.version)
print(torch.version.cuda)
print(torch.backends.cudnn.version())

这个时候会出来一个cudnn版本,然后再根据print出来的版本号去官网下载对应的cudnn。

p.s.如果print出来是8500,那就下载8.5.0.0版本

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值